前後軸承的壓比怎麼計算
A. 軸承與軸承座壓間隙後怎樣計算
一般按照H7的公差等級定軸承座。
B. 軸承的計算公式
內徑代號:一般情抄況下軸承內徑用軸承內徑代號(基本代號的後兩位數)×5=內徑(mm),例:軸承6204的內徑是04×5=20mm 。
常見特殊情況:
一 當軸承內徑小於20mm
軸承內徑尺寸為(mm)
10
12
15
17
對應內徑代號為
00
01
02
03
二 當軸承內徑小於10mm,直接用基本代號的最後一位表示軸承內徑尺寸;例:軸承608Z,用基本代號『608』的最後一位8作內徑尺寸,軸承608Z的內徑為8mm。以此類推627的內徑為7mm,634的內徑為4mm。
三 軸承的內徑不是5的倍數或者大於等於500mm,內徑代號用斜杠『/』隔開。另一種情況:有部分滾針軸承舊代號內徑代號直接用『/』隔開。這幾種情況『/』後邊的幾位數值為軸承內徑尺寸。見下表示例:
軸承型號
619/1.5
62/22
60/500
3519/1120
7943/25
內徑尺寸(mm)
1.5
22
500
C. 軸承的尺寸是怎麼算的
第一個數字或第一個字母或字母組合表示軸承類型;可以在示意圖中看到實際軸承類型。
後面兩位數字確定ISO尺寸系列;第一位數字代表寬度或高度系列(分別是尺寸B、T或H),第二位數代表直徑系列(尺寸D) 。
基本型號的最後兩位數字是軸承的尺寸代號;乘以5就能得出以毫米為單位的內徑。
(3)前後軸承的壓比怎麼計算擴展閱讀:
在一些情況下,表示軸承類型的數字和/或表示尺寸系列的第一個數字被省略。這些數字在表中放在括弧里。
對於內徑小於等於10毫米或者大於等於500毫米的軸承,內徑通常用毫米表示,不用代號。尺寸與軸承型號的其餘部分用斜線分開,例如:618/8 (d = 8毫米)或511/530 (d = 530毫米)。
按照ISO15:1998內徑為22、28或32毫米的標准軸承也適用該方法,例如62/22 (d = 22毫米)。
內徑為10、12、15與17毫米的軸承有下列尺寸代號標志:00 = 10毫米01 = 12毫米;02 = 15毫米
03 = 17毫米;
對於一些內徑小於10毫米的較小軸承,例如深溝、自調心與角接觸球軸承,內徑也用毫米來表示(不用代號),但是它與系列型號之間不用斜線分開, 例如629或129 (d = 9毫米)。
偏離標准內徑的軸承內徑總是不用代號,而是用多達三位小數的毫米來表示。該內徑標志是基本型號的一部分,它與基本型號之間用斜線分開,例如6202/15875 (d = 15875毫米=5/8英寸)。
D. 如果知道一條壓輥的軸頭直徑,求怎麼計算它應該用多大的軸承
軸頭直徑除以五即可:如直徑100毫米軸承位採用的應該是XX20型的,20前面的英文與數字表示的是類別和寬窄系列。
E. 軸承型號計算公式怎麼算的 謝謝
關於復軸承型號,具體查下制《滾動軸承國家標准手冊》內代號章節有詳細介紹,現簡單介紹如下:
現行軸承型號基本都是五位數:0 0 0 00
第一位表示軸承類型代號:
0指雙列角接觸球軸承
1 -調心球軸承
2 -調心滾子或推力調心滾子軸承
3 -圓錐滾子軸承
4 -雙列深溝球軸承
5 -推力球軸承
6 -深溝球軸承
7 -角接觸球軸承
8 -推力圓柱滾子軸承
N -圓柱滾子軸承
U -外球面球軸承
QJ-四點接觸球軸承
第二、三位數分別表示的是尺寸系列代號:寬度系列與直徑系列,了解即可
第四五位數表示軸承內徑代號,具體釋義如下:
00-指內徑為10mm
01-指內徑為12mm
02-內徑15mm
03-內徑17mm
04以上 內徑為 04X5=20 mm
內徑大於500mm及小於10mm的非整數內徑尺寸的軸承,內徑代號用/內徑尺寸直接表示,如內徑650mm的深溝球軸承用618/650表示;內徑3.5mm的深溝球軸承用618/3.5表示;
另還有幾個特殊內徑22、28、32的內徑代號用/22、/28、/32表示.
至於此五位數之前的前置代號、之後的後置代號,可查具體代號標准。
F. 軸承間隙怎麼計算
在各種傳動設備的安裝過程中,或多或少會遇到軸承的間隙問題,蝸輪減速機與齒輪減速機作為最常見的傳動設備,下面對減速機滾動軸承的間隙產生原因及調整方式進行介紹:
一、滾動軸承的故障原因
滾動軸承依靠主要元件之聞的滾動接觸來支持轉動零件。滾動軸承因具有摩擦阻力小、功率消耗少、起動容易、能自動調整中心以補償軸彎曲及適量的裝配誤差等優點,故以滾動軸承的滾動摩擦取代了滑動軸承的滑動摩撩,因而在現代機器設備中得到廣泛運用。
在生產運用中,滾動軸承也易發生故障,究其主要原因為間隙調整不當。在實際生產過程中,滾動軸承在機器設備中最常見的故障有:脫皮剝落、磨損、過熱變色、銹蝕裂紋和破碎等。
製造質量不合格及潤滑保養不良問題,只需在檢修安裝前仔細檢查,檢修安裝後建立起嚴格的定期加油保養制度,就能克服由此而引起的軸承故障。因此,間隙調整不當就成為軸承故障的主要原因。
二、滾動軸承的基本結構
滾動軸承是由內圈,外圈,滾動體和保持架4部分組成。內圈與軸頸裝配,外圈與軸承座裝配。當內外圈相對轉動時,滾動體即在內外圈的滾道問滾動。
三、齒輪減速機滾動軸承的間隙及其量方法
1、滾動軸承的間隙
軸承問隙是保證油膜潤滑和滾動體轉動暢通無阻所必須的。其間隙數值均有標准或規定。根據軸承所處的狀態不同,其間隙有原始間隙、配合間隙和工作間隙。
原始間隙是軸承未裝配前自由狀態下的間隙值。
配合間隙是軸承安裝到軸和軸承座後的間隙。由於配合的過盈關系,配合間隙永遠小於原始間隙。
工作間隙是軸承工作時的間隙。由於內外圈的溫差使工作間隙小於配合間隙,又由於旋轉離心力的作用使滾動體和內外圈產生彈性變形,工作間隙又大於配合間隙(一般情況下,工作間隙太於配合間隙)。
2、間隙的測量
測量原始間隙可用百分表。測量配合間隙時,可用塞尺或鉛絲放入滾動體與內外圈之間,盤動轉子,使滾動體滾過塞尺或鉛絲,其塞尺或被壓扁鉛絲厚度即為軸承的徑向配合間隙。軸向配合間隙可用深度卡尺測量或壓鉛絲法測量。
四、間隙的調整
齒輪減速機運行時轉軸溫度較高,調整後,將墊片增加到0.20ram。即:調整後膨脹端徑向間隙(ram):0.014-}-0.20:0.214
膨脹間隙可根據公式計算,該引風機設計運行溫度為135℃,室溫按20℃計算,因此為115℃(135—20),兩軸承座中心距離f為5m。故:膨脹間隙f(mm):1.2×(115+SO)×C100—9·9。
根據引風機要求還應考慮冷縮間隙,一般冷鰭間隙為0.50mm。因此,通過加墊片調整,把膨脹間隙調整到11.5mm,同時解決冷縮間隙。
通過以上分析可知,造成引風機軸承溫度高的主要原因是,由於原來的兩端軸承徑向間隙太小,受熱後膨脹,產生緊力,導致膨脹端無法游動,所以軸承溫升。
G. 軸承熱裝時怎麼確定壓裝力
你可以計算一下軸承的熱膨脹系數是1.5/1000度,如果軸承內徑比軸大則所需壓力特小
H. 軸承安裝產生的過盈量怎麼計算
計算公式。
(1): 配合的影響
1、 軸承內圈與鋼質實心軸:△j = △dy * d/h
2、 軸承內圈與鋼質空心軸:△j = △dy * F(d)
F(d) = d/h * [(d/d1)2 -1]/[(d/d1)2 - (d/h)2]
3、 軸承外圈與鋼質實體外殼:△A = △Dy * H/D
4、 軸承外圈與鋼質薄壁外殼:△A = △Dy * F(D)
F(D) = H/D * [(F/D)2 - 1]/[(F/D)2 - (H/D)2]
5、 軸承外圈與灰鑄鐵外殼:△A = △Dy * [F(D) – 0.15 ]
6、 軸承外圈與輕金屬外殼:△A = △Dy * [F(D) – 0.25 ]
注:
△j -- 內圈滾道擋邊直徑的擴張量(um)。
△dy — 軸頸有效過盈量(um)。
d -- 軸承內徑公稱尺寸(mm)。
h -- 內圈滾道擋邊直徑(mm)。
B -- 軸承寬度(mm)。
d1 -- 空心軸內徑(mm)。
△A -- 外圈滾道擋邊直徑的收縮量(mm)。
△Dy -- 外殼孔直徑實際有效過盈量(um)。
H -- 外圈滾道擋邊直徑(mm)。
D -- 軸承外圈和外殼孔的公稱直徑(mm)。
F -- 軸承座外殼外徑(mm)。
(2): 溫度的影響
△T = Гb * [De * ( T0 – Ta ) – di * ( Ti – Ta)]
其中 Гb 為線膨脹系數,軸承鋼為11.7 *10-6 mm/mm/ 0C
De 為軸承外圈滾道直徑,di 為軸承內圈滾道直徑。
Ta 為環境溫度。
T0 為軸承外圈溫度,Ti 軸承內圈溫度。
四、軸向游隙與徑向游隙的關系:
Ua = [4(fe + fi – 1) * Dw * Ur – Ur2 ] 1/2
因徑向游隙Ur很小、故Ur2 很小,忽略不記。
故 Ua = 2 * [(fe + fi –1) * Dw * Ur ] 1/2
其中 fe 為外圈溝曲率系數,fi 為內圈溝曲率系數,Dw 為鋼球直徑。
I. 把軸承壓入軸承孔的壓力如何計算
的確像大地雷公所說的,和你的軸的精度有關,所以,只有在一些特殊軸內承的安裝時,才有計算的義意,容比如:錐孔的軸承,用液壓工具壓入裝配,要根據壓力確定軸承間隙是否調整好了。
SKF有專門的計算工具,我見過,但不敢確定在網站上是否有,你可以到www.SKF.COM上去找找看。