當前位置:首頁 » 化工軸承 » 生物分離為什麼比化工分離難

生物分離為什麼比化工分離難

發布時間: 2021-03-10 19:31:46

㈠ 與化學產品的分離制備相比較,生物大分子的制備有什麼特點

2.1 概述 ? 在自然科學,尤其是生命科學高度發展的今天,蛋白質、酶和核酸等生物大分子的結構與功能的研究是探求生命奧秘的中心課題,而生物大分子結構與功能的研究,必須首先解決生物大分子的制備問題,有能夠達到足夠純度的生物大分子的制備工作為前題,結構與功能的研究就無從談起.然而生物大分子的分離純化與制備是一件十分細致而困難的工作. ? 與化學產品的分離制備相比較,生物大分子的制備有以下主要特點: ? ⑴生物材料的組成極其復雜,常常包含有數百種乃至幾千種化合物. ? ⑵許多生物大分子在生物材料中的含量極微,分離純化的步驟繁多,流程長. ? ⑶許多生物大分子一旦離開了生物體內的環境時就極易失活,因此分離過程中如何防止其失活,就是生物大分子提取制備最困難之處. ? ⑷生物大分子的制備幾乎都是在溶液中進行的,溫度、pH值、離子強度等各種參數對溶液中各種組成的綜合影響,很難准確估計和判斷. ? 生物大分子的制備通常可按以下步驟進行: ? ①確定要制備的生物大分子的目的和要求,是進行科研、開發還是要發現新的物質. ? ②建立相應的可靠的分析測定方法,這是制備生物大分子的關鍵. ? ③通過文獻調研和預備性實驗,掌握生物大分子目的產物的物理化學性質. ? ④生物材料的破碎和預處理. ? ⑤分離純化方案的選擇和探索,這是最困難的過程. ? ⑥生物大分子制備物的均一性(即純度)的鑒定,要求達到一維電泳一條帶,二維電泳一個點,或HPLC和毛細管電泳都是一個峰. ? ⑦產物的濃縮,乾燥和保存. ? ? 分析測定的方法主要有兩類: ? 即生物學和物理、化學的測定方法. ? 生物學的測定法主要有:酶的各種測活方法、蛋白質含量的各種測定法、免疫化學方法、放射性同位素示蹤法等; ? 物理、化學方法主要有:比色法、氣相色譜和液相色譜法、光譜法(紫外/可見、紅外和熒光等分光光度法)、電泳法、以及核磁共振等. ? 實際操作中盡可能多用儀器分析方法,以使分析測定更加快速、簡便. 要了解的生物大分子的物理、化學性質主要有: ? ①在水和各種有機溶劑中的溶解性. ? ②在不同溫度、pH 值和各種緩沖液中生物大分子的穩定性. ? ③固態時對溫度、含水量和凍干時的穩定性. ? ④各種物理性質:如分子的大小、穿膜的能力、帶電的情況、在電場中的行為、離心沉降的表現、在各種凝膠、樹脂等填料中的分配系數. ? ⑤其他化學性質:如對各種蛋白酶、水解酶的穩定性和對各種化學試劑的穩定性. ? ⑥對其他生物分子的特殊親和力. ? 制備生物大分子的分離純化方法多種多樣,主要是利用它們之間特異性的差異,如分子的大小、形狀、酸鹼性、溶解性、溶解度、極性、電荷和與其他分子的親和性等. ? 各種方法的基本原理可以歸納為兩個方面: ? ①利用混合物中幾個組分分配系數的差異,把它們分配到兩個或幾個相中,如鹽析、有機溶劑沉澱、層析和結晶等; ? ②將混合物置於某一物相(大多數是液相)中,通過物理力場的作用,使各組分分配於不同的區域,從而達到分離的目的,如電泳、離心、超濾等. ? 目前純化蛋白質等生物大分子的關鍵技術是電泳、層析和高速與超速離心. ? 2.2 生物大分子制備的前處理 ? 2.2.1 生物材料的選擇 ? 制備生物大分子,首先要選擇適當的生物材料.材料的來源無非是動物、植物和微生物及其代謝產物. ? 選擇的材料應含量高、來源豐富、制備工藝簡單、成本低,盡可能保持新鮮,盡快加工處理. ? 動物組織要先除去結締組織、脂肪等非活性部分,絞碎後在適當的溶劑中提取,如果所要求的成分在細胞內,則要先破碎細胞. ? 植物要先去殼、除脂. ? 微生物材料要及時將菌體與發酵液分開. ? 生物材料如暫不提取,應冰凍保存.動物材料則需深度冷凍保存. ? 2.2.2 細胞的破碎 ? 不同的生物體或同一生物體的不同部位的組織,其細胞破碎的難易不一,使用的方法也不相同,如動物臟器的細胞膜較脆弱,容易破碎,植物和微生物由於具有較堅固的纖維素、半纖維素組成的細胞壁,要採取專門的細胞破碎方法. ? (1)機械法: ? 1) 研磨:將剪碎的動物組織置於研缽或勻漿器中,加入少量石英砂研磨或勻漿. ? 2) 組織搗碎器:這是一種較劇烈的破碎細胞的方法,通常可先用家用食品加工機將組織打碎,然後再用10000r/min~20000r/min的內刀式組織搗碎機(即高速分散器)將組織的細胞打碎. ? (2)物理法: ? 1) 反復凍融法:將待破碎的細胞冷至-15℃到-20℃,然後放於室溫(或40℃)迅速融化,如此反復凍融多次,由於細胞內形成冰粒使剩餘胞液的鹽濃度增高而引起細胞溶脹破碎. ? 2) 超聲波處理法:此法是藉助超聲波的振動力破碎細胞壁和細胞器.破碎微生物細菌和酵母菌時,時間要長一些. ? 3) 壓榨法:這是一種溫和的、徹底破碎細胞的方法.在1000×105Pa~2000×105Pa 的高壓下使細胞懸液通過一個小孔突然釋放至常壓,細胞將徹底破碎. ? 4) 冷熱交替法:從細菌或病毒中提取蛋白質和核酸時可用此法.在90℃左右維持數分鍾,立即放入冰浴中使之冷卻,如此反復多次,絕大部分細胞可以被破碎. ? (3)化學與生物化學方法: ? 1) 自溶法:將新鮮的生物材料存放於一定的pH和適當的溫度下,細胞結構在自身所具有的各種水解酶(如蛋白酶和酯酶等)的作用下發生溶解,使細胞內含物釋放出來. ? 2) 溶脹法:細胞膜為天然的半透膜,在低滲溶液和低濃度的稀鹽溶液中,由於存在滲透壓差,溶劑分子大量進入細胞,將細胞膜脹破釋放出細胞內含物. ? 3) 酶解法:利用各種水解酶,如溶菌酶、纖維素酶、蝸牛酶和酯酶等,於37℃,pH8,處理15分鍾,可以專一性地將細胞壁分解. ? 4) 有機溶劑處理法:利用氯仿、甲苯、丙酮等脂溶性溶劑或SDS(十二烷基硫酸鈉)等表面活性劑處理細胞,可將細胞膜溶解,從而使細胞破裂,此法也可以與研磨法聯合使用. ? ? 2.2.3 生物大分子的提取 ? 「提取」是在分離純化之前將經過預處理或破碎的細胞置於溶劑中,使被分離的生物大分子充分地釋放到溶劑中,並盡可能保持原來的天然狀態不丟失生物活性的過程. ? 影響提取的因素主要有: ? 目的產物在提取的溶劑中溶解度的大小; ? 由固相擴散到液相的難易; ? 溶劑的pH值和提取時間等. ? 通常: ? 極性物質易溶於極性溶劑,非極性物質易溶於非極性溶劑; ? 鹼性物質易溶於酸性溶劑,酸性物質易溶於鹼性溶劑; ? 溫度升高,溶解度加大; ? 遠離等電點的pH值,溶解度增加. ? 提取時所選擇的條件應有利於目的產物溶解度的增加和保持其生物活性. ? ⑴ 水溶液提取: ? 蛋白質和酶的提取一般以水溶液為主.稀鹽溶液和緩沖液對蛋白質的穩定性好,溶解度大,是提取蛋白質和酶最常用的溶劑.用水溶液提取生物大分子應注意的幾個主要影響因素是: ? 1) 鹽濃度(即離子強度): ? 離子強度對生物大分子的溶解度有極大的影響,有些物質,如DNA-蛋白復合物,在高離子強度下溶解度增加. ? 絕大多數蛋白質和酶,在低離子強度的溶液中都有較大的溶解度,如在純水中加入少量中性鹽,蛋白質的溶解度比在純水時大大增加,稱為「鹽溶」現象.鹽溶現象的產生主要是少量離子的活動,減少了偶極分子之間極性基團的靜電吸引力,增加了溶質和溶劑分子間相互作用力的結果. ? 為了提高提取效率,有時需要降低或提高溶劑的極性.向水溶液中加入蔗糖或甘油可使其極性降低,增加離子強度(如加入KCl、NaCl、NH4Cl或(NH4)2SO4)可以增加溶液的極性. ? ? 2) pH值:蛋白質、酶與核酸的溶解度和穩定性與pH值有關.過酸、過鹼均應盡量避免,一般控制在pH=6~8范圍內,提取溶劑的pH應在蛋白質和酶的穩定范圍內,通常選擇偏離等電點的兩側. ? 3) 溫度:為防止變性和降解,制備具有活性的蛋白質和酶,提取時一般在0℃~5℃的低溫操作. ? 4) 防止蛋白酶或核酸酶的降解作用:加入抑制劑或調節提取液的pH、離子強度或極性等方法使相應的水解酶失去活性,防止它們對欲提純的蛋白質、酶及核酸的降解作用. ? 5) 攪拌與氧化:攪拌能促使被提取物的溶解,一般採用溫和攪拌為宜,速度太快容易產生大量泡沫,增大了與空氣的接觸面,會引起酶等物質的變性失活.因為一般蛋白質都含有相當數量的巰基,有些巰基常常是活性部位的必需基團,若提取液中有氧化劑或與空氣中的氧氣接觸過多都會使巰基氧化為分子內或分子間的二硫鍵,導致酶活性的喪失.在提取液中加入少量巰基乙醇或半胱氨酸以防止巰基氧化. ? ⑵ 有機溶劑提取 ? 一些和脂類結合比較牢固或分子中非極性側鏈較多的蛋白質和酶難溶於水、稀鹽、稀酸、或稀鹼中,常用不同比例的有機溶劑提取. ? 常用的有機溶劑有乙醇、丙酮、異丙醇、正丁酮等,這些溶劑可以與水互溶或部分互溶,同時具有親水性和親脂性. ? 有些蛋白質和酶既溶於稀酸、稀鹼,又能溶於含有一定比例的有機溶劑的水溶液中,在這種情況下,採用稀的有機溶液提取常常可以防止水解酶的破壞,並兼有除去雜質提高純化效果的作用. 例如,胰島素(見講義p36). ? 2.3 生物大分子的分離純化 ? 由於生物體的組成成分是如此復雜,數千種乃至上萬種生物分子又處於同一體系中,因此不可能有一個適合於各類分子的固定的分離程序,但多數分離工作關鍵部分的基本手段是相同的. ? 為了避免盲目性,節省實驗探索時間,要認真參考和借鑒前人的經驗,少走彎路.常用的分離純化方法和技術有: ? 沉澱法(包括:鹽析、有機溶劑沉澱、選擇性沉澱等)、離心、吸附層析、凝膠過濾層析、離子交換層析、親和層析、快速制備型液相色譜以及等電聚焦制備電泳等.本章以介紹沉澱法為主. ? 2.3.1 沉澱法 ? 沉澱是溶液中的溶質由液相變成固相析出的過程.沉澱法(即溶解度法)操作簡便,成本低廉,不僅用於實驗室中,也用於某些生產目的的制備過程,是分離純化生物大分子,特別是制備蛋白質和酶時最常用的方法.通過沉澱,將目的生物大分子轉入固相沉澱或留在液相,而與雜質得到初步的分離. ? 其基本原理是根據不同物質在溶劑中的溶解度不同而達到分離的目的,不同溶解度的產生是由於溶質分子之間及溶質與溶劑分子之間親和力的差異而引起的,溶解度的大小與溶質和溶劑的化學性質及結構有關,溶劑組分的改變或加入某些沉澱劑以及改變溶液的pH值、離子強度和極性都會使溶質的溶解度產生明顯的改變. ? 在生物大分子制備中最常用的幾種沉澱方法是: ? ⑴中性鹽沉澱(鹽析法):多用於各種蛋白質和酶的分離純化. ? ⑵有機溶劑沉澱:多用於蛋白質和酶、多糖、核酸以及生物小分子的分離純化. ? ⑶選擇性沉澱(熱變性沉澱和酸鹼變性沉澱):多用於除去某些不耐熱的和在一定pH值下易變性的雜蛋白. ? ⑷等電點沉澱:用於氨基酸、蛋白質及其他兩性物質的沉澱,但此法單獨應用較少,多與其他方法結合使用. ? ⑸有機聚合物沉澱: 是發展較快的一種新方法, 主要使用PEG聚乙二醇(Polyethyene glycol)作為沉澱劑. ? 2.3.1.1 中性鹽沉澱(鹽析法) ? 在溶液中加入中性鹽使生物大分子沉澱析出的過程稱為「鹽析」.除了蛋白質和酶以外,多肽、多糖和核酸等都可以用鹽析法進行沉澱分離. ? 鹽析法應用最廣的還是在蛋白質領域,已有八十多年的歷史,其突出的優點是: ? ①成本低,不需要特別昂貴的設備. ? ②操作簡單、安全. ? ③對許多生物活性物質具有穩定作用. ? ⑴ 中性鹽沉澱蛋白質的基本原理 ? 蛋白質和酶均易溶於水,因為該分子的-COOH、-NH2和-OH都是親水基團,這些基團與極性水分子相互作用形成水化層,包圍於蛋白質分子周圍形成1nm~100nm顆粒的親水膠體,削弱了蛋白質分子之間的作用力,蛋白質分子表面極性基團越多,水化層越厚,蛋白質分子與溶劑分子之間的親和力越大,因而溶解度也越大.親水膠體在水中的穩定因素有兩個:即電荷和水膜.因為中性鹽的親水性大於蛋白質和酶分子的親水性,所以加入大量中性鹽後,奪走了水分子,破壞了水膜,暴露出疏水區域,同時又中和了電荷,破壞了親水膠體,蛋白質分子即形成沉澱.鹽析示意圖如下頁「圖 4」所示. ? ⑵ 中性鹽的選擇 ? 常用的中性鹽中最重要的是(NH4)2SO4,因為它與其他常用鹽類相比有十分突出的優點: ? 1) 溶解度大:尤其是在低溫時仍有相當高的溶解度,這是其他鹽類所不具備的.由於酶和各種蛋白質通常是在低溫下穩定,因而鹽析操作也要求在低溫下(0~4℃)進行.由下表可以看到, 硫銨在0℃時的溶解度,遠遠高於其它鹽類: ? 表2-1 幾種鹽在不同溫度下的溶解度(克/100毫升水) ? 0℃ 20℃ 80℃ 100 ℃ (NH4)2SO4 70.6 75.4 95.3 103 ? Na2SO4 4.9 18.9 43.3 42.2 ? NaH2PO4 1.6 7.8 93.8 101 ? ? ? ? ? 2) 分離效果好:有的提取液加入適量硫酸銨 鹽析,一步就可以除去75%的雜蛋白,純 度提高了四倍. ? 3) 不易引起變性,有穩定酶與蛋白質結構的 作用.有的酶或蛋白質用2~3mol/L濃度的 (NH4)2SO4保存可達數年之久. ? 4) 價格便宜,廢液不污染環境. ? ⑶ 鹽析的操作方法 ? 最常用的是固體硫酸銨加入法.將其研成細粉,在攪拌下緩慢均勻少量多次地加入,接近計劃飽和度時,加鹽的速度更要慢一些,盡量避免局部硫酸銨濃度過大而造成不應有的蛋白質沉澱.鹽析後要在冰浴中放置一段時間,待沉澱完全後再離心與過濾. ? 在低濃度硫酸銨中鹽析可採用離心分離,高濃度硫酸銨常用過濾方法. ? 各種飽和度下需加固體硫酸銨的量可由附錄中查出. ? ⑷ 鹽析曲線的製作 ? 如果要分離一種新的蛋白質和酶,沒有文獻數據可以借鑒,則應先確定沉澱該物質的硫酸銨飽和度.具體操作方法如下(講義p39): 蛋白質量(mg)或酶活力 10 20 30 40 50 60 70 80 90 100 硫銨飽 和度% ? ⑸鹽析的影響因素 ? 1) 蛋白質的濃度:高濃度的蛋白質用稍低的硫酸銨飽和度沉澱,若蛋白質濃度過高,易產生各種蛋白質的共沉澱作用.低濃度的蛋白質,共沉澱作用小,但回收率降低.較適中的蛋白質濃度是2.5%~3.0%,相當於25 mg/mL~30mg/mL. ? 2) pH值對鹽析的影響:在等電點處溶解度小,pH值常選在該蛋白質的等電點附近. ? 3) 溫度的影響:對於蛋白質、酶和多肽等生物大分子,在高離子強度溶液中,溫度升高,它們的溶解度反而減小.在低離子強度溶液或純水中蛋白質的溶解度大多數還是隨濃度升高而增加的.一般情況下,可在室溫下進行.但對於某些對溫度敏感的酶,要求在0℃~4℃下操作,以避免活力喪失. ? ? 2.3.1.2 有機溶劑沉澱法 ? ⑴基本原理 ? 有機溶劑對於許多蛋白質(酶)、核酸、多糖和小分子生化物質都能發生沉澱作用,是較早使用的沉澱方法之一.其原理主要是: ? ①降低水溶液的介電常數,向溶液中加入有機溶劑能降低溶液的介電常數,減小溶劑的極性,從而削弱了溶劑分子與蛋白質分子間的相互作用力,導致蛋白質溶解度降低而沉澱. ? ②由於使用的有機溶劑與水互溶,它們在溶解於水的同時從蛋白質分子周圍的水化層中奪走了水分子,破壞了蛋白質分子的水膜,因而發生沉澱作用. ? ? 有機溶劑沉澱法的優點是: ? ①分辨能力比鹽析法高,即一種蛋白質或其他溶質只在一個比較窄的有機溶劑濃度范圍內沉澱. ? ②沉澱不用脫鹽,過濾比較容易(如有必要,可用透析袋脫有機溶劑).因而在生化制備中有廣泛的應用. ? 其缺點是對某些具有生物活性的大分子容易引起變性失活,操作需在低溫下進行. ? ⑵有機溶劑的選擇和濃度的計算 ? 用於生化制備的有機溶劑的選擇首先是要能與水互溶.沉澱蛋白質和酶常用的是乙醇、甲醇和丙酮. ? 為了獲得沉澱而不著重於進行分離,可用溶液體積的倍數:如加入一倍、二倍、三倍原溶液體積的有機溶劑,來進行有機溶劑沉澱. ? ⑶有機溶劑沉澱的影響因素 ? 1) 溫度:多數生物大分子如蛋白質、酶和核酸在有機溶劑中對溫度特別敏感,溫度稍高就會引起變性,且有機溶劑與水混合時產生放熱反應,因此必須預冷,操作要在冰鹽浴中進行,加入有機溶劑時必須緩慢且不斷攪拌以免局部過濃. ? 一般規律是溫度越低,得到的蛋白質活性越高. ? 2) 樣品濃度:低濃度樣品回收率低,要使用比例更大的有機溶劑進行沉澱.高濃度樣品,可以節省有機溶劑,減少變性的危險,但雜蛋白的共沉澱作用大. ? 通常使用5mg/mL~20mg/mL的蛋白質初濃度為宜. ? ? 3) pH值:選擇在樣品穩定的pH值范圍內,通常是選在等電點附近,從而提高此沉澱法的分辨能力. ? 4) 離子強度:鹽濃度太大或太小都有不利影響,通常鹽濃度以不超過5%為宜,使用乙醇的量也以不超過原蛋白質水溶液的2倍體積為宜,少量的中性鹽對蛋白質變性有良好的保護作用,但鹽濃度過高會增加蛋白質在水中的溶解度,降低了沉澱效果,通常是在低濃度緩沖液中沉澱蛋白質. ? 沉澱所得的固體樣品,如果不是立即溶解進行下一步的分離,則應盡可能抽干沉澱,減少其中有機溶劑的含量,如若必要可以裝透析袋透析脫有機溶劑,以免影響樣品的生物活性. ? 2.3.1.3 選擇性變性沉澱法 ? 這一方法是利用生物大分子與非目的生物大分子在物理化學性質等方面的差異,選擇一定的條件使雜蛋白等非目的物變性沉澱而得到分離提純. ? ⑴ 熱變性 ? 利用生物大分子對熱的穩定性不同,加熱升高溫度使非目的生物大分子變性沉澱而保留目的物在溶液中. ? ⑵ 表面活性劑和有機溶劑變性 ? 使那些對表面活性劑和有機溶劑敏感性強的雜蛋白變性沉澱.通常在冰浴或冷室中進行. ? ⑶ 選擇性酸鹼變性 ? 利用對pH值的穩定性不同而使雜蛋白變性沉澱.通常是在分離純化流程中附帶進行的分離純化步驟. ? 2.3.1.4 等電點沉澱法 ? 利用具有不同等電點的兩性電解質,在達到電中性時溶解度最低,易發生沉澱,從而實現分離的方法.氨基酸、蛋白質、酶和核酸都是兩性電解質,可以利用此法進行初步的沉澱分離. ? 由於許多蛋白質的等電點十分接近,而且帶有水膜的蛋白質等生物大分子仍有一定的溶解度,不能完全沉澱析出,因此,單獨使用此法解析度較低,因而此法常與鹽析法、有機溶劑沉澱法或其他沉澱劑一起配合使用,以提高沉澱能力和分離效果. ? 此法主要用於在分離純化流程中去除雜蛋白,而不用於沉澱目的物. ? 2.3.1.5 有機聚合物沉澱法 ? 有機聚合物是六十年代發展起來的一類重要的沉澱劑,最早應用於提純免疫球蛋白和沉澱一些細菌和病毒.近年來廣泛用於核酸和酶的純化.其中應用最多的是 「聚乙二醇」【HOCH2(CH2OCH2)nCH2OH (n >4)】( Polyethylene Glycol 簡寫為 PEG ),它的親水性強,溶干水和許多有機溶劑,對熱穩定,有廣泛圍的分子量,在生物大分子制備中,用的較多的是分子量為6000~20000的 PEG. ? 本方法的優點是: ? ①操作條件溫和,不易引起生物大分子變性. ? ②沉澱效能高,使用很少量的P「EG即可以沉澱相當多 的生物大分子. ? ③沉澱後有機聚合物容易去除. ? 2.3.2 透析 ? 自Thomas Graham 1861年發明透析方法至今已有一百多年.透析已成為生物化學實驗室最簡便最常用的分離純化技術之一.在生物大分子的制備過程中,除鹽、除少量有機溶劑、除去生物小分子雜質和濃縮樣品等都要用到透析的技術. ? 透析只需要使用專用的半透膜即可完成.保留在透析袋內未透析出的樣品溶液稱為「保留液」,袋(膜)外的溶液稱為「滲出液」或「透析液」.截留分子量MwCO通常為1萬左右. ? 用1% BaCl2檢查(NH4)2SO4,用1% AgNO3 檢查NaCl、KCl等. ? 2.3.3 超濾 ? 超過濾即超濾,自20年代問世後,直至60年代以來發展迅速,很快由實驗室規模的分離手段發展成重要的工業單元操作技術.超濾現已成為一種重要的生化實驗技術,廣泛用於含有各種小分子溶質的各種生物大分子(如蛋白質、酶、核酸等)的濃縮、分離和純化. ? 超濾是一種加壓膜分離技術,即在一定的壓力下,使小分子溶質和溶劑穿過一定孔徑的特製的薄膜,而使大分子溶質不能透過,留在膜的一邊,從而使大分子物質得到了部分的純化. ? 超濾根據所加的操作壓力和所用膜的平均孔徑的不同,可分為微孔過濾、超濾和反滲透三種. ? 微孔過濾所用的操作壓通常小於4×104Pa,膜的平均孔徑為500埃~14微米(1微米=104埃),用於分離較大的微粒、細菌和污染物等. ? 超濾所用操作壓為4×104Pa~7×105Pa,膜的平均孔徑為10—100埃,用於分離大分子溶質. ? 反滲透所用的操作壓比超濾更大,常達到35×105Pa~140×105Pa,膜的平均孔徑最小,一般為10埃以下,用於分離小分子溶質,如海水脫鹽,制高純水等. ? 超濾技術的優點是操作簡便,成本低廉,不需增加任何化學試劑,尤其是超濾技術的實驗條件溫和,與蒸發、冰凍乾燥相比沒有相的變化,而且不引起溫度、pH的變化,因而可以防止生物大分子的變性、失活和自溶. ? 在生物大分子的制備技術中,超濾主要用於生物大分子的脫鹽、脫水和濃縮等. ? 超濾法也有一定的局限性,它不能直接得到乾粉制劑.對於蛋白質溶液,一般只能得到10~50%的濃度. ? 超濾技術的關鍵是膜. ? 常用的膜是由乙酸纖維或硝酸纖維或此二者的混合物製成.近年來發展了非纖維型的各向異性膜,例如聚碸膜、聚碸醯胺膜和聚丙烯腈膜等.這種膜在pH 1~14都是穩定的,且能在90℃下正常工作.超濾膜通常是比較穩定的,能連續用1~2年. ? 超濾膜的基本性能指標:水通量(cm3/(cm2?h));截留率(以百分率%表示);化學物理穩定性(包括機械強度)等. ? 超濾裝置由若干超濾組件構成.分為板框式、管式、螺旋卷式和中空纖維式四種主要類型. ? 由於超濾法處理的液體多數是含有水溶性生物大分子、有機膠體、多糖及微生物等.這些物質極易粘附和沉積於膜表面上,造成嚴重的濃差極化和堵塞,這是超濾法最關鍵的問題,要克服濃差極化,通常可加大液體流量,加強湍流和加強攪拌. ? 2.3.4 冰凍乾燥 ? 冰凍乾燥機是生化與分子生物學實驗室必備的儀器之一,因為大多數生物大分子分離純化後的最終產品多數是水溶液,要從水溶液中得到固體產品,最好的辦法就是冰凍乾燥

㈡ 生物1:2:1性狀分離比是什麼情況

在中學階段的話,通常是一對等位基因雜合子交配後代,顯隱性呈不完全顯性(即顯性純合與雜合子表現型不同)關系時出現的比例。如親本基因型都是Aa,後代基因型及比例是AA:Aa:aa=1:2:1,表現型之比也是1:2:1。

㈢ 什麼是生物分離與化學分離相比有何特點

生物分離的基本概念
生物分離是從生物材料、微生物的發酵液、生物反應液或動植物細胞的培養液中分離並純化有關產品(如具有葯理活性作用的蛋白質等)的過程,又稱為下游加工過程。
生物分離過程的主要特點
n
常無固定操作方法可循
生物材料組成非常復雜
n
分離操作步驟多,不易獲得高收率
培養液(或發酵液)中所含目的物濃度很低,而雜質含量卻很高
n
分離進程必須保護化合物的生理活性
生物活性成分離開生物體後,易變性、破壞
n
基因工程產品,一般要求在密封環境下操作。
生物分離的一般工藝流程
發酵液→預處理→細胞分離→(
細胞破碎→細胞碎片分離


→初步純化→高度純化→成品加工
註:(1)胞內產物需經細胞破碎,細胞碎片分離等步驟;胞外產物則將細胞去除後,對餘下的液體即可進行初步純化。
(2)在初步純化及其以前的各步操作,處理的體積較大,著重於濃縮,稱為提取或分離;以後各步為精細的分離操作,著重於純化,稱為精製(或純化)。
生物分離的各階段的常用方法
(1)發酵液的預處理
n
加熱
n
調pH
n
絮凝和凝聚
(2
)固液分離
n
沉降
n
離心分離
n
過濾
n
錯流過濾
(3)細胞破碎
n
機械法
高壓勻漿、高速珠磨、
超聲波破碎
n
非機械法
化學法、酶解法、滲透壓沖擊法、凍結融化法、乾燥法
(4
)初步純化
n
沉澱法
n
吸附法
n
萃取法
n
超濾法
(5)高度純化
n
層析
親和層析、凝膠層析、離子交換層析
n
電泳
n
結晶和重結晶
(6
)成品加工
n
無菌過濾
n
去熱原
n
乾燥
冷凍乾燥、噴霧乾燥
n
制劑
生物分離方法的選擇依據
n
傳統生物葯物(抗生素)
根據具體條件,通過小實驗決定,選擇時應考慮兩個因素。
(1)抗生素的理化性質:極性、酸鹼性、溶解度等,了解其理化性質,通常利用紙層析和紙電泳的方法。
(2)抗生素的穩定性:要了解它在什麼樣的pH和溫度范圍易受破壞。
紙層析
抗生素在某一種溶劑中的Rf值大,表明它在該種溶劑中溶解度大;相反,如Rf值小,則溶解度小。如Rf為零,則說明不能溶解。如抗生素在極性強的溶劑中有較大的Rf值,則表明該抗生素是極性化合物;而非極性抗生素在非極性溶劑中Rf值較大,在極性溶劑中Rf值較小。
紙電泳
通過紙層析判斷為水溶性的抗生素,可用紙電泳法進一步判斷其電離性質。
電泳結果與樣品性質的判斷見課本第六頁表1-1。
生物分離方法的選擇依據
n
基因工程葯物
應根據目標蛋白和雜蛋白在物理、化學和生物化學方面性質的差異,如,生物特異性、分子量、等電點值和穩定性等。當幾種方法聯用時,最好以不同的分離機理為基礎,且前一種方法處理過的液體應能適於後一種方法的料液。

㈣ 生物分離工程與化學分離工程的區別和特點

生物分離工程與化學分離工程的區別和特點
生物分離工程定義

是生物化學工程的一個重要組成部分,它是描述回收生物產品分離過程原理和方法的一個術語,指從發酵液或酶反應液或動植物細胞培養液中分離、純化生物產品的過程。

2.生物產品定義

生物產品是指在生產過程的某一階段,應用生化反應製得的產品。它包括傳統的(常規的)生物技術產品(如用發酵生產的有機溶劑,氨基酸,有機酸,抗生素)和現代生物技術產品(如用重組DNA技術生產的醫療性多肽和蛋白質)。

3.下游加工選擇准則

(1)採用步驟數量少;(2)採用步驟的次序要相對合理;(3)產品的規格;(4)產品的生產規模;(5)進料組成;(6)產品的形式、穩定性、物性;(7)危害性,廢水;(8)分批或連續過程,

第二章

1.預處理常見方法

預處理的目的:改變發酵液的物理性質促進固液分離,有利於產物的回收,並能夠去除發酵液中的雜質;

方法:1)加熱;最簡單、最經濟的預處理方法是加熱,加熱不僅可以增加料液的操作特性,也可以對其進行滅菌。但加熱變性的方法只適合於對熱穩定性的產物。

2)調節pH;

3)凝聚和絮凝;通過電解質的加入促進原始溶液的凝聚和絮凝,試劑有簡單的電解質、酸、鹼、合成的聚合電解質。

4)助濾劑上的吸附;

這些方法也適用於對於離心和沉澱過程。

2.凝聚與絮凝的比較

1)凝聚: 簡單電解質降低了膠體粒子間的排斥電位,從而使得范德華引力起主導作用,聚合成較大的膠粒,粒子的密度越大,越易分離。 凝聚值:使膠粒發生凝集作用的最小電解質濃度(mmol/L)。

反離子的價數越高,凝聚值就越小。A13+>Fe3+>H+……常用的有明礬(硫酸鋁)、石灰、硫酸亞鐵、三氯化鐵等

2)絮凝:預處理時加入合成聚合電解質既能降低排斥電位,又吸附了周圍的微粒,形成橋架作用,促使膠粒形成粗大,密度低的絮凝團。這些絮凝團很容易被過濾得到。

3.過濾操作計算

見書本P20

4.助濾劑定義

助濾劑是一種顆粒均勻,質地堅硬、不可壓縮的顆粒物質,過濾時能夠防止介質堵塞。 1)硅藻土:硅藻土是百年前水生植物沉澱下來的遺骸。 2)珍珠岩 :珍珠岩是處理過的膨脹火山岩。

㈤ 為什麼說分離技術水平嚴重影響到食品,葯品和發酵生物產品的品質和效益

食品工業中用發酵和煮制的話,常常用離心技術。此外層析和膜分離也很常用。下面介紹下生物分離技術和生物技術在食品工業中的應用進展。生物分離技術最常見的分離純化方法包括鹽析和有機溶劑分級沉澱、超濾技術、層析技術、電泳技術、離心技術。 (1)鹽析或有機溶劑分級沉澱:向反應產物溶液中加入大量易溶解的鹽如氯化鈉、硫酸銨,這些鹽的離子能結合大量的水,產物因此被鹽沉澱出來。產物溶液中加入能和水互溶的有機溶劑如乙醇、丙酮,常常能降低產物溶解度,而使產物沉澱。選擇適當條件可使產物和雜質分開。 (2) 超濾技術:選擇適當孔徑的超濾膜或超濾中空纖維柱,通過抽濾加壓使一定大小的分子能水一起穿過孔徑,更大的分子則被擋住,以此將產物分離出來。 (3)層析技術:使用濾紙、纖維素、樹脂、凝膠顆粒、多空玻璃珠等填充支持物或者不同於溶劑的另一種液相作為固定的介質對溶劑中的不同物質的結合力不一樣,當溶劑向前推進時,溶劑中的不同溶質便可彼此分開。此外還有按分子大小分開的分子篩層析,按解離能力和離子性質分開的離子交換層析,按生物分子間親和力大小分開的親和層析,以及按兩相溶液間分配系數差異而分開的逆流分溶。 (4)電泳技術:帶有電荷的離子或顆粒在電場作用下向一個電擊方向移動,離子或顆粒因其所帶電荷和質量的不同,在電場中的移動速度不同,因而彼此被分開。被廣泛使用的是凝膠電泳,而毛細管電泳具有最靈敏的分析效果。 (5)細胞、細胞碎片和生物大分子在離心力場作用下能被沉澱下來。離心機在每分鍾旋轉10000次以下的低速是就能使細胞沉澱,細胞碎片要在每分鍾旋轉20000到30000次的高速下才能被沉降,生物大分子則需要在每分鍾旋轉30000次以上的超速離心方能克服分子熱運動而被沉降。生物技術在食品工業中的應用進展益生菌:隨著益生菌多項保健功能的不斷發現,如平衡腸道菌群,改善腸道功能、調節免疫、增強消化功能,促進營養物質吸收、抗誘變和防癌特性、抗氧化與延緩衰老以及改善心血管系統等。目前,國際上對益生菌的研究顯得非常活躍,特別是在日本、法國、美國等國家已形成了系統化專業性科研隊伍。世界各國益生暢甫扳晃殖浩幫彤爆廓菌研究主要集中在益生菌促進人體健康的機理、益生菌的工業化與產業化應用技術、更高質量或帶多功能性益生菌的高效篩選與定向設計等前沿領域,其研究成果應用於食品工業生產大大提高了人體健康水平並帶來了客觀的經濟效益。在我國,特別是在奶製品和一些功能性的食品中益生菌已廣為運用。在基礎研究方面,我國科學家取得了豐碩的研究成果。2008年7月,內蒙古農業大學等單位承擔的益生菌L.casei Zhang基因組學和蛋白質組學研究項目通過鑒定,項目完成了益生菌L.ca-sei Zhang染色體基因組和質粒基因組plca36序列的測定,從而能夠准確地將該菌株的益生功能基因進行定位,為其益生機理進一步深入研究和相關產品的開發應用從基因水平上奠定了基礎。該項目的完成標志著我國在乳酸菌基因組學方面的研究達到國際水平。同時,國內圍繞乳製品、發酵肉製品工業發酵劑菌株篩選獲得重要進展,建立了從多菌相肉品發酵體系中定向篩選特質菌株的高通量技術平台和我國第一個原創性、具有自主知識產權的乳酸菌菌種資源庫,篩選得到了幾十株具有優良生產性狀及益生特性的乳酸菌菌株,為我國益生菌製品的開發奠定了強大的技術和菌源基礎。代謝工程:在代謝工程研究方面,隨著研究應用的深入,代謝工程的定義也在不斷更新,現在多將其定義為利用基因工程技術,有目的地對細胞代謝途徑進行精確地修飾、改造或擴展、構建新的代謝途徑,以改變微生物原有代謝特性,並與微生物基因調控、代謝調控及生化工程相結合,提高目的代謝產物活性或產量,合成新的代謝產物的工程技術科學。總體而言,代謝工程是在建立代謝網路理論的基礎上,通過對代謝流的定性、定量分析,從而對代謝工程進行設計包括改變代謝流、擴展代謝途徑和構建新的代謝途徑等方法,其核心是在分子水平上對靶基因或基因簇進行遺傳操作,所以又稱為第三代基因工程。代謝工程主要包括3個步驟:細胞途徑的修飾(合成),修飾後細胞表型的嚴格評價(表型表徵),根據評價結果設計進一步的修飾(優化設計)。其中,表現表徵的評價即是在獲得大量生化反應數據的基礎上,採用化學、數學的研究方法並結合先進的信息技術進行高通量分析,進一步研究細胞代謝的動態特徵和控制機理,並由此發展了各種數學系統模型用於輔助改善代謝工程設計。隨著後基因組學時代的到來,各種組學技術(基因組學、轉錄物組學、蛋白質組學、代謝物組學、代謝通量組學等)在代謝工程相關研究中被廣泛使用,通過組學技術對細胞基因組以及細胞與微觀和宏觀環境條件關系等特性進行表型表徵,代替傳統表型表徵的方法,使代謝工程的研究從局部通路水平上升到整體水平,從而可以更好地揭示生物復雜代謝網路及調控機理,進行代謝工程的研究。目前,以各層次功能基因組學研究為基礎,藉助高通量實驗技術和生物信息學工具等,通過整合各層次組學研究數據,建立數學模型,或通過比較不同菌株或同一菌株在不同條件下各個層次組學差異以闡明生命活動規律,以此進行代謝工程設計的尺度多層次的系統生物學方法,成為了各國科學家研究的重點方向。生物反應器:在生物反應器研究方面,自動化、多功能和高效率的新型生物反應器一直是近年來研究的熱點。包括人工生物反應器和天然生物反應器,比如微生物、動物和植物表達系統等,研究主要集中在將分離技術和生物反應過程結合開發出高效率的生物反應器,比如超臨界反應器和膜反應器等,以及研究生物反應機理、反應過程參數感測器的研製、自動化控制系統和數學模型的建立等,特別是參數控制方面的研究和固體發酵生物反應器的開發是研究的兩個重點領域。安全檢測:此外,生物技術,如酶聯免疫吸附測定(ELISA)、聚合酶鏈式反應(PCR)和DNA晶元技術等用於食品微生物、毒素以及殘留葯物等食品安全檢測方面也顯示出其靈敏度高、特異性強、簡便快捷等優勢,逐漸成為食品安全研究的重要方向。

㈥ 生物:性狀分離比為什麼是3:1

Aa自交 後代是AA Aa Aa aa 三個顯性性狀 一個隱形 所以三比一 謝謝採納

㈦ 本人是985大學生物專業的學生,今年大3了,考研打算考生物分離工程或者生物化工

作為你的學長,我得問你一下,你將來是打算蹲在實驗室還是去企業?如果打算蹲在實驗室,建議選分離工程,如果打算去企業,選後者,我是生物技術的,不過我跨專業去學了經濟學,說真的,咱們這個專業比較枯燥無聊,我同學現在大部分都在化工企業實驗室。建議你考慮好,我是呆不住實驗室,所以轉了專業!不過選擇選擇生物了,工資和工作環境比較穩定,如果考的話,建議考中科院生物所吧,感覺不是很難!

㈧ 生物產品與普通化工產品分離過程有何不同

生物產品較普通化工產品成分復雜、目標產物濃度低、收率低、易失活、不穩定,分離所佔成本較高,尤其是一些生物活性產品,分離成本可以佔到占整個生產費用的80%-90%。

不過更多的生物產品是非活性產品活性產品並不多

一般的處理技術有:

回收技術:絮凝,離心,過濾,微過濾。

細胞破碎技術:球磨,高壓勻漿,化學破碎技術

初步純化技術:沉澱,離子交換,萃取,膜分離技術,鹽析法,有機溶劑沉澱

高度純化技術:離子交換,結晶,重結晶,各類層析如:親和,疏水,聚焦,離子交換,凝膠等

成品加工噴霧乾燥,氣流乾燥,沸騰乾燥,冷凍乾燥,結晶

還要注意時間短、溫度低、PH適中、清潔衛生、防止菌體擴散

一般過程如下:

㈨ 高中生物遺傳中 分離比 和 性狀分離 中的「分離」有什麼區別

分離比是不同性狀之間的比例,比如一對相對性狀的雜合子自交後代的性狀分離比為3:1。

而性狀分離 中的「分離」是指子一代中出現中顯性性狀與隱性性狀,比如一對相對性狀的雜合子自交後代的出現了兩種性狀。就是發生了分離。像課本上的高莖豌豆自交後代出現了高莖和矮莖兩種性狀。

㈩ 什麼是生物上的分離比

一般來講就是性狀分離比。
比如Aa和Aa交配,後代顯性:隱形=3:1
這就是分離比。

熱點內容
三個字的電影名 發布:2024-08-19 09:10:03 瀏覽:417
台灣紅羊經典電影 發布:2024-08-19 09:02:17 瀏覽:767
搞笑電影范冰冰梁家輝開戰 發布:2024-08-19 08:53:18 瀏覽:917
免費午夜激情 發布:2024-08-19 08:42:15 瀏覽:831
40分鍾左右的英語電影 發布:2024-08-19 08:28:43 瀏覽:695
電影宋基美娜 發布:2024-08-19 08:27:04 瀏覽:942
宿舍都變成女的的電影 發布:2024-08-19 07:59:35 瀏覽:897
台灣恐怖片喪屍 發布:2024-08-19 07:57:21 瀏覽:179
免費觀看qq群 發布:2024-08-19 07:53:00 瀏覽:921
4級片名字 發布:2024-08-19 07:39:14 瀏覽:553