當前位置:首頁 » 礦產開采 » 開采沉陷對礦山地質損害的類型有哪些

開采沉陷對礦山地質損害的類型有哪些

發布時間: 2021-01-08 23:30:00

① 礦山地質環境的有關概念及問題

一、礦山地質環境的有關概念

礦山環境是指礦產資源開發活動影響到的區域內自然因素的總體。

礦山環境問題是指礦產資源勘查、開采、洗選和閉坑等過程中對環境造成的不良影響和損害,主要包括:佔用與損毀土地資源、破壞水均衡、引發地質災害、廢水廢氣廢渣污染環境、破壞自然景觀與生態等。

礦山地質環境指礦床及其周圍地區礦業活動影響到的岩石圈部分,與大氣、水、生物圈之間相互聯系(物質交換)和能量流動組成的環境系統。

礦山地質環境治理是指由於采礦及相關活動影響,致使原來的礦山生態環境、地質環境遭受破壞、變異,甚至形成地質災害。通過人工措施使生態環境得到恢復或改善;使地質環境條件得到優化;使有關災害得到有效控制以達到新的環境平衡。

礦區地質災害是指采礦活動誘發的地質災害,主要有崩塌、滑坡、泥石流、開采沉陷、岩溶塌陷、地裂縫等。

地下水資源枯竭指過量抽排地下水,地下水位超常降低,使含水層中儲存量及補給量被消耗,在一定時期內不能恢復的現象,包括井泉乾涸、含水層疏干、地下水位超常降低、地表水漏失等問題。

區域地下水均衡破壞指由於大量抽排地下水,使一個較大面積的地區或含水層的地下水總補給量與總消耗量及貯存量的均衡受到破壞的過程和現象。抽排量不超過補給量和可動用的貯存量為均衡,消耗量大於補給量為負均衡。

地表水、地下水水質污染指由於人類活動造成地表水或地下水中溶解和懸浮的成分超過國家允許最大濃度含量標準的現象。

礦區水土流失指由於礦業活動使土壤及其母質岩石的結構發生破碎和鬆散,被水流大量搬動散失的過程和現象。

礦區土地荒漠化指由於礦業活動使地表翻動,以及產生地面塌陷、開裂、地下水位降低及土地污染等使土地荒蕪,變成類似沙漠景觀的環境退化現象。

二、礦山地質環境問題

據《全國礦山地質環境調查和評估》項目統計數據得知,全國礦山總共達13.2225萬座。其中東北地區礦山總數為1.3503萬座,華北地區為4.036萬座,華東地區為2.6601萬座,中南地區為1.9923萬座,西南地區為1.0765萬座,西南地區為2.1073萬座(表5-1-1)。

表5-1-1 全國礦山數量表

續表

我國開采礦產資源的歷史悠久,新中國成立以來礦業發展更加迅速,為中國經濟的發展作出了巨大貢獻的同時也付出了巨大的環境代價。由於初期的認識不夠,加之錯誤思想的引導,只注重經濟利益,犧牲了環境資源,造成了礦產資源的浪費。改革開放以來,大量的私有新開礦山不斷湧出,使礦山地質環境問題呈現分散普遍的趨勢。隨著舊有的礦山地質環境問題的堆積和新礦山的破壞,將礦山地質環境問題由局部點上破壞,演化成區域性地質環境問題,影響到人居環境的安全和生活質量。

礦產品在被消耗以前,一般會完成礦產品的開采、加工、運輸、買賣和使用5個環節,在每個環節中都有可能造成對環境的污染和破壞,尤其是開采過程中對環境的破壞程度最大,也是引發環境問題最多的一個環節。

礦山地質環境問題目前比較普遍的分類如下:

(1)三廢污染:固體廢棄物污染、水污染、大氣污染;

(2)資源損毀:水資源破壞、侵佔土地、土地功能退化(水土流失、土地沙化)、海水入侵等;

(3)地質災害:崩塌、滑坡、泥石流、地裂縫、地面塌陷、地面沉降、山體開裂等。

(一)「三廢」污染

1.固體廢棄物的污染

在礦山開采過程中的主要廢棄物有廢石、尾礦等。廢棄物的長久堆積除了佔用大量土地,也會引起揚塵自燃等廢氣污染,加上常年降雨的沖刷和淋濾作用,使很多有害成分進入土壤和地表水體,造成土壤污染和水污染問題,給礦區周圍的生存環境帶來了不安全因素。

表5-1-2 全國采礦固體廢棄物產生及排放情況

註:數據來自《中國統計年鑒2005》。

2.大氣污染

大氣污染主要來自礦區揚塵、矸石自燃、有害氣體揮發等。暴露在地表的堆積物,在氣候作用下,容易產生自燃、爆炸等結構變化,發生氣體釋放和表面成分風化進入大氣。並且容易引起酸雨等二次污染。

3.水污染

水污染主要來自於礦井水的排放,其次來自於廢石堆淋濾作用產生的滲出液,還有選礦、冶煉廢水及尾礦池水的排放。這些廢水中含有大量的重金屬離子、酸離子、有的伴有油污,一般未經處理直接排放,對地表水、地下水污染十分嚴重。

地下水的污染一般局限於礦山附近,為廢水及廢渣、尾礦堆經淋濾下滲或被污染的地表水下滲所致。

表5-1-3 全國采礦業工業廢氣排放情況

註:數據來自《中國統計年鑒2005》。

表5-1-4 全國采礦業廢水排放及處理情況

註:數據來自《中國統計年鑒2005》。

(二)資源毀損

1.采礦破壞大量的土地資源

采礦工業佔用破壞土地資源,其中佔用的土地是指生產、生活設施及開發破壞影響的土地和為礦山服務的交通佔地;其中破壞的土地是指露天采礦場、排土場、尾礦場、塌陷區及其他礦山地質災害破壞的土地面積。

據統計,一座大型礦山平均佔地達18~20萬m2,小礦山也有幾萬平方米。

我國每年工業固體廢物排放量中,85%以上來自礦山開采。全國國有煤礦現有矸石山1500餘座,歷年堆積量達3億t,佔地5000hm2。各種尾礦累計約25億t。

據不完全統計,截至2003年,全國部分省區礦業開發佔用和破壞的土地共計560665hm2,其中尾礦堆放佔用土地43815hm2,露天采礦佔用土地144240hm2,采礦塌陷244713hm2。廢石和尾礦任意排放,不僅佔用土地,污染土壤、水、空氣,還會造成地表的植被破壞和誘發地質災害。

土地佔用比較嚴重的有山西、遼寧、吉林、黑龍江、湖南、雲南等省。

2.水平衡系統的破壞

疏干排水破壞地表水、地下水均衡系統,造成大面積疏干漏斗、泉水乾枯、水資源逐步枯竭、河水斷流、地表水入滲或經塌陷灌入地下等現象,影響了礦山地區的生態環境。沿海地區的一些礦山因疏干漏斗不斷發展,當其邊界達到海水面時,易引起海水入侵現象。

3.土地功能退化

礦業活動,特別是露天開采,大量破壞了植被和山坡土體,產生的廢石、廢渣等鬆散剝離物質極易導致礦山地區水土流失。

疏干排水和地下采空,破壞了水平衡系統,地面缺水,植被乾枯,從而導致荒漠化趨勢。

此外,采礦工程與礦坑排水使地下水頭壓力、礦山壓力與圍岩之間失去平衡,從而引起一系列環境工程地質問題。如地下采空區頂板冒落及塌陷、巷道底板鼓脹、露天采礦場邊坡的滑動、礦坑涌水等,均可造成嚴重的危害。

4.采礦破壞地表景觀

對地表景觀的破壞主要表現為其開發活動對自然景觀、地貌、地形、地質遺跡、土地及地表植被的破壞,廢棄物等對地表景觀和地質遺跡的污染和侵蝕。

(三)采礦誘發地質災害

由於礦山開采需要對地表或者地下進行大規模採掘,改變了礦區的地應力平衡,采礦遺留下來的廢石堆、尾礦庫、地下巷道等都極易在一定的誘因下衍變成地質災害。露天開採的礦山會破壞土壤結構、破壞生態環境,在氣候變化的時候,由於風或者雨水作用,造成滑坡、泥石流、崩塌等地質災害。並且容易造成地下開采礦山破壞地下地質結構、破壞地下水均衡,在雨水或地質條件作用下,容易引起地面塌陷、地裂縫等地質災害。

全國因采礦引起的地面塌陷達180處以上,其中塌陷坑1600個,塌陷面積達1150km2。全國發生采礦塌陷災害的礦業城市近40個,其中嚴重的有25個。全國每年僅因采礦導致的地面塌陷造成的經濟損失達4億元以上。

② 礦山地質環境問題分類有哪些

高清在線電影。礦山地質環境現狀評估圖H.2.1圖面主要反映評價區的地質環境條件、存在的礦山地質環境問題等。內容包括:a)地理要素:包括主要地形等高線、控制點;地表水系、水庫、湖泊的分布;重要城鎮、村莊、工礦企業;干線公路、鐵路、重要管線;人文景觀、地質遺跡、供水水源地、岩溶泉域等各類保護區。b)地質環境條件要素:包括礦區地貌分區、地層岩性(產狀)、主要地質構造、水文地質要素(如井、泉分布)等。c)礦區范圍與工程布局:露采境界、礦區范圍、采區布置、地下開采主要巷道的布置等。d)主要礦山地質環境問題:采空區、地面塌陷、地裂縫、崩塌、滑坡、含水層破壞、地形地貌景觀破壞、土地資源破壞等的分布、規模;采礦固體廢棄物堆放位置與規模;已治理的礦山地質環境問題類型及范圍等。f)現狀評估結果:用普染色表示礦山地質環境影響程度分級,參見附錄K3。當單要素評估結果有重疊時,採取就高不就低原則編圖。若圖面信息量大,可另附單要素評估圖。H.2.2平面圖上應附綜合地層柱狀圖、綜合地質剖面圖等鑲圖;可根據需要附專門性鑲圖,如礦體底板等值線圖、降水等值線圖、全新世活動斷裂與地震震中分布圖、評估區周圍礦山分布圖、地下水等水位線圖等。H.2.3可用鑲表說明礦山地質環境問題類型、編號、地理位置、分布范圍與規模、影響程度、形成時間、防治情況等。H.2.4常用圖例參照附錄K,其他圖例參照GB958。H.3礦山地質環境影響預測評估圖H.3.1圖面主要反映采礦活動對評估區地質環境可能造成的影響。內容包括:a)地理要素:包括主要地形等高線、控制點;地表水系、水庫、湖泊的分布;重要城鎮、村莊、工礦企業;干線公路、鐵路、重要管線;人文景觀、地質遺跡、供水水源地、岩溶泉域等各類保護區。b)預測評估:用普染色表示礦山地質環境影響程度分級,參見附錄K3。當單要素評估結果有重疊時,採取就高不就低原則編圖。若圖面信息量大,可另附單要素評估圖。H.3.2對重點區域(由采礦引發地質環境問題突出的區域)可以在圖面上插入鑲圖進一步說明,如完整的泥石流溝、重要地質災害隱患點、地下水疏干范圍等。鑲圖比例尺視具體情況而定。H.3.3可用鑲表對礦山地質環境影響預測評估結果加以說明,如潛在礦山地質環境問題類型、編號、地理位置、分布范圍與規模、影響程度、防治難度分級等。H.3.4常用圖例參附錄K,其他圖例參照GB958。H.4礦山地質環境保護與治理恢復部署圖H.4.1圖面主要反映礦山地質環境保護與治理恢復責任范圍分區、工作部署等。內容包括:a)地理要素:包括主要地形等高線、控制點;地表水系、水庫、湖泊的分布;重要城鎮、村莊、工礦企業;干線公路、鐵路、重要管線;人文景觀、地質遺跡、供水水源地、岩溶泉域等各類保護區。b)礦山地質環境保護與治理恢復分區:用普染色表示不同的防治區域。c)工程部署:主要防治、監測工作的布置、措施與手段等。H.4.2鑲圖:可根據需要對防治區內的主要工程部署、防治工程措施與手段等插入放大比例尺的專門性鑲圖。H.4.3鑲表:用鑲表對礦山地質環境保護與治理恢復分區加以說明,包括分區名稱、編號、分布、面積;主要礦山地質環境問題類型和影響程度、防治措施、手段、進度安排。H.4.4常用圖例參照附錄K,其他圖例參照GB958。以上是規范裡面原文,但是現實編寫過程中可以根據不同的礦山情況有所調整

③ 礦山開采活動對礦山地質環境有什麼影響

采礦業的不斷發展為我國的經濟發展作出了一定 的貢獻,但也對自然環境造成了不可估量的破壞。因此,我們要詳細了解地下開采對礦山地質環境造成的影響。地下開采是形成地質災害的外因 ; 地層岩性和地質構造是形成地質災害的內因。在地下開采過程中,因開采而形成的采空區極易引發地表塌陷,便地形、地貌產生變化,從而造成地質災害。因此,采空區帶來的不利影響在地質環境的破壞中尤為嚴重。
采空區的影響因素影響礦山開采出現采空區塌陷危害的因素主要有以下七方面:
① 空區的體積和連續開采。一般而言,采空區的體積越大,岩體的穩定性越差:采空區連續開採的程度越高,地壓活動越明顯。
② 開采深度。開來深度越大,地壓增加越明顯。上覆岩 層的重力與地壓成正比,如果存在構造影響,則水平應力會大於垂直應力。
③ 地下水。一方面,地下水對岩體結構面起 著溶蝕、軟化和泥化的作用,降低了弱面的強度; 另一方面, 在裂隙水壓的作用下,裂隙表面的摩擦阻力會較少,岩體的抗剪強度會降低。因此,礦山地壓往往發生在每年的冬季解凍期和雨季。
④ 時間。 一般來說,在具備了其他可引發應力集中現象的條件下,時間便成為了重要的可變因素。
⑤ 結構弱 面。雖然大型連續結構弱面可起到避免發生大范圍破壞的作用,但是, 其對采空區塌陷的發生和發展也起到了加速作用。
⑥ 開采技術 。 采礦方法、礦塊的回採順序、礦柱的結構參數和回採工藝等均對地壓有著重要的影響。
⑦ 岩石性質。岩石的礦物組成、結晶程度和礦物顆粒之間的連結特徵等均會對地壓產生影響。

④ 礦山生態修復的類型有哪些

礦山生態修復的類型有以下四種基本類別:

1、生態恢復類

在礦山開采過程中,對礦山的盲目開采容易造成土壤剝離、岩石碎塊和低品位礦石堆積形成、空采區和塌陷區形成、尾礦堆積形成、受采礦影響而無法利用開發的土地等。

對其進行恢復的話,穩定邊坡的任務是清除危石、降坡削坡,將未形成台階的懸崖盡量構成水平台階。

對尾礦的治理措施,加大尾礦的利用率,有銷路的尾礦以實現規模經營和多品種開發的資源化、商品化使其變廢為寶,真正成為經濟商品中的一部分。

2、旅遊開發類

為了全面整頓與規范礦產資源開發秩序,對不符合開發條件的礦山關停整改,對關停後的礦山進行旅遊項目開發,建設多元化主題景觀,例如植物園、休閑娛樂園、露天博物館等。

3、復墾造田類

將開發後的礦山進行復墾,要求使農田和森林恢復原狀,要求控制水蝕和有毒物的沉積;保證地表不變和地下水位維持原有水平;保持表土仍在原位置;注重有害和酸性物的預防和治理;防止堆積物產生滑坡等災害。

4、引水造湖類

將開發後的礦山進行復墾,要求使農田和森林恢復原狀,要求控制水蝕和有毒物的沉積;保證地表不變和地下水位維持原有水平;保持表土仍在原位置;注重有害和酸性物的預防和治理;防止堆積物產生滑坡等災害。

(4)開采沉陷對礦山地質損害的類型有哪些擴展閱讀:

截止到2020年11月,我國礦山生態修復工作堅持系統設計、整體推進、分步修復;保障安全、恢復生態、兼顧景觀;突出重點、因地制宜、分類施策;

自然修復為主、人工修復為輔的原則,根據礦區所在的地理位置、氣候條件、生態區域、地質背景、社會經濟狀況、主要生態問題等因素,評估礦山生態修復潛力,確定生態修復方向,同時針對不同規模、不同礦種、不同開采方式的各類礦山,採用不同的生態修復技術方法。

⑤ 礦山過度開采對生態環境的破壞有哪些

礦山開采對生態環境產生了嚴重破壞。水文地質條件變化及區域水質污染,礦回區答開采造成地下儲水結構發生變化,地表徑流變更使得水源枯竭,礦坑水、廢石淋濾水造成嚴重的水污染。土壤污染退化。由於表土清除,采礦後遺留的大部分礦渣,養分與水分缺乏。隨著土壤裂隙的擴大,土壤養分會直接滲入土壤中,造成嚴重的酸鹼污染、重金屬污染、有機毒害物質污染。危害毗鄰區環境和人類健康。

⑥ 礦山地面塌陷與復墾

5.4.3.1 開采塌陷

地表下沉和塌陷范圍一般大於采空區面積。當采空區為長方形時,下沉塌陷盆地大致是橢圓形(圖5-4)。橢圓盆地的范圍與沿煤層走向方向的移動角δ、沿傾斜方向的移動角β、γ有關。

不同傾角α的煤層,其下沉塌陷情況有所不同。煤層上覆岩層的物理力學性質對地表沉陷的影響甚大。在煤層傾角相同的情況下,移動角隨岩石強度的增大而增大。一般情況下,基岩的移動角值為50°~90°,表土的移動角為45°~55°,因此,覆岩越堅硬,地表下沉范圍越大。按覆岩性質區分的移動角數值如表5-3所示,利用表5-3數據以及所研究的礦井實際相關資料採用正規作圖法,即可對相應煤層采動後地面塌陷范圍做出預測。據陝西韓城象山煤礦實測資料分析,采空區面積在2ha時(即100m長的工作面推進200m時)是地表移動活躍期,大部分塌陷裂縫在此時產生。統計資料表明,地面塌陷面積與井下煤層開采面積之比平均值為1.2,塌陷體積與開采體積之比平均值為0.6~0.7,緩傾斜煤層,地表最大下沉深度一般為煤層開采總厚度的70%(表5-3)。

圖5-4 地下採煤地面沉陷示意圖

A—傾斜煤層;B—急傾斜煤層

1—塌陷區;2—裂縫區;3—移動區;4—采空區;5—采空區水平投影面;6—移動邊界線

表5-3 不同硬度覆岩移動角

5.4.3.2 開采塌陷指數

開采塌陷造成地表塌陷區面積大小及深度與礦層產狀、開采深度,以及采空區管理方法等因素有關。塌陷裂縫區面積與采礦規模呈正相關。如在地下採煤中,人們習慣用每采萬噸煤地面塌陷的土地面積(ha)作為一個指標反映地表形態的破壞程度,通常稱其為塌陷指數或塌陷率,它在一定程度上反映了煤炭開采量與塌陷佔地的相關性。各礦區和各地區均有其平均數值。比如,1996年和2000年陝西煤礦塌陷指數為0.258 和0.237,甘肅為0.236和0.221;寧夏為0.378 和0.368,新疆為0.146 和0.160,青海為0.178 和0.188等。

經驗表明,煤礦塌陷影響邊界值可通過煤層開采邊界外推0.5 倍采深來確定。采深H=500m,則塌陷影響邊界值約為250m。塌陷區面積約為煤層開采面積的1.2 倍,最大下沉值為煤層采出厚度的70%~80%。

1995~2003年間陝西185煤田地質勘探隊、神府煤炭勘測設計分公司、煤炭科學研究總院唐山分院等單位在陝西、內蒙古神東礦區大柳塔礦1203工作面、補連塔礦2211工作面、榆家梁礦45101工作面和孫家溝礦88101工作面地表設立了觀測站,進行了井下採煤地表塌陷的實地觀測,有關實測(計算)值列入表5-4。利用移動和變形分布函數表(表5-5),計算出走向正斷面上的移動和變形預計值(表5-6),按表5-6的相關參數值作礦區地面移動和變形曲線圖(圖5-5)。

地表與岩層移動過程受地質及採煤等條件的影響,通過對各礦井工作面觀測資料及綜合數據(表5-4),即可對地面移動和變形主要參數進行預計。預算步驟:

表5-4 神東礦區礦井工作面開采塌陷實測(計算)值

(1)確定預計參數:

拐點偏距So=30m,

主要影響半徑

(2)預計最大移動和變形值:

最大下沉值Wo=mqcosα=3.7×1000×0.6×cos2.5°=2255(mm);

最大傾斜值

最大麴率值

最大水平移動Uo=bWo=0.27×2255=609(mm);

最大水平變形值

(3)預計走向主斷面上的移動和變形值:x軸原點選在距工作面實際邊界So=30m(由於So為正值,應向采空區方向量取)的O點處,指向采空區(圖5-5)。進行預計算時要利用移動和變形分布函數值表(表5-5),預計算方法及結果見表5-6,由表5-6數據作出神東礦區地面移動和變形預計曲線,如圖5-5所示。

圖5-5 神東礦區地面移動和變形預計曲線圖

1—下沉曲線;2—傾斜曲線;3—曲率曲線;4—水平移動曲線;5—水平變形曲線

A—實際煤壁位置;B—計算時採用的假想煤壁位置;ABC—下沉前原始位置;AB1C1—下沉後頂板實際位置;D—拐點;So—偏距

表5-5 地表塌陷移動和變形分布函數值表

註:當

為「+」值時,A(

)取上一行的數,A″(

)取「」號;當

為「」值時,A(

)取下一行的數,A″(

)取「+」號。

表5-6 走向正斷面上的移動和變形預計值

5.4.3.3 地面塌陷及地裂縫

5.4.3.3.1 工作面超前影響

工作面推進過程中的超前影響可用走向正斷面圖說明(圖5-6),工作面由開切眼推進一定距離到達A點後,岩層移動開始波及到地表,這一距離稱為起動距,地表開始下沉是以觀測地表點的下沉距達到10mm時為准,起動距大小主要與頂板岩性和采空面積有關,一般工作面推進(0.2~0.3)H0(H0為平均開采深度m),或采空面積達到(25~33)H0(m2)時地表開始下沉。如按面積計算,大柳塔礦1203工作面起動距在10~13m之間,故確定其起動距為0.2H0

圖5-6 工作面推進過程中的超前影響

當工作面推進至B點時,得下沉曲線W1,工作面前方1 點開始受采動影響而下沉,而推進距離約為1.4H0即85m時(C點),得下沉曲線W2,地表2點開始受影響而下沉。在工作面推進過程中,其前方地表受采動影響而下沉,稱為超前影響。L1、L2、L3為超前影響距。ω1、ω2、ω3為超前影響角,榆家梁礦超前影響角為79°,當工作面回採結束,地表移動穩定後,該角等於邊界角 δ0(64°)。神東礦區綜合超前影響距 L=H0ctgδo=130 ctg61°=72m。

5.4.3.3.2 地表移動盆地

實際觀測表明,通常在采空區的長度 D2和寬度 D1均達到和超過(1.2~1.4)H0(H0為平均開采深度)時,地表可達到充分采動(地表移動盆地出現平底)。神東礦區D2/H0=15.7,D1/H0=1.51,地表可達到充分采動。

工作面回採結束,地表移動盆地如圖5-7 所示,神東礦區移動盆地分為三個邊界:①由邊界角61°所圈定的最外圍的邊界(取地表下沉10mm的點為邊界點),即圖中的ACBD;②危險移動邊界,是以盆地內的地表移動與變形對建築物有無危害劃分的邊界,對建築物有無危害的標準是以臨界變形值衡量的,目前我們採用的一組臨界變形值是11,傾斜變形i≤3mm,水平變形值ε≤2mm,曲率k≤0.2mm/m2,以此指標為准在圈定的范圍以外為地表移動和變形不產生明顯損害的地帶,在圈定的范圍以內為地表移動和變形對建築物產生有害影響的地帶,在神東礦區這一帶以其移動角75°所圈定,如圖中的A′C′B′D′;③移動盆地的裂縫邊界,神東礦區以裂縫角79°所圈定,如圖中的A″C″B″D″,顯然ACBD面積>A′C′B′D′面積>A″C″B″D″面積,我們把A′B′C′D′面積稱為采空地表塌陷面積,其中包括裂縫發育面積。移動盆地長軸應為工作面長加工作面停采後超前影響距 L=H0ctgδ=130ctg75°=35m,再加開切眼煤柱一側上方地表移動距55-30=25m(圖5-7),即2044+35+25=2104m,塌陷面積為2104×266=559664m2,為開采面積的1.4倍,各工作面的塌陷面積和開采面積比值如表5-7所示。

圖5-7 神東煤礦區地表移動盆地邊界示意圖

5.4.3.3.3 地裂縫

神東礦區煤層上覆岩層以砂岩為主,泥鈣質膠結。砂岩抗壓強度為22~48 MPa(厚度加權平均抗壓強度為42MPa)。煤層抗壓強度低,遇水易泥化、軟化和風化。覆岩中形成冒落帶、裂縫帶和彎曲帶,地表則產生緩慢連續變形,但如開采深度小,冒落帶和裂縫帶可直達地表,地表產生非連續變形,如大柳塔礦1203工作面,實際采高m=3.5m,采深H0=61m,H0/m=17。據有關資料,一般情況下,軟弱岩層形成的冒落裂縫帶高度為采高的9~12倍,中硬岩石為采高的12~18倍,1203工作面頂板屬中硬岩石,如按冒裂帶高度為采高的18倍計算,為63m,則已達地表,此時,在采空區外邊緣形成的裂縫與采空區貫通,構成向工作面涌水潰沙的通道。冒裂帶之上是彎曲帶,彎曲帶內岩層在水平方向處於雙向受壓狀態,其壓實程度較好,具有隔水性。彎曲帶高度主要受開采深度的影響。當采深很大時,彎曲帶高度可大大超過冒裂帶高度,此時,開采形成的裂縫不會到達地表,地表移動和變形相對較緩,有時在地表也可能產生一些裂縫(由地表拉伸變形所引起),但這些裂縫表現為上大下小,到一定深度(<5m)時一般自行閉合而消失,通常不和井下裂縫相溝通,其他三個礦的地表裂縫就是這種情況。但由於沙土鬆散層具有濕陷性,這種裂縫破壞帶,遇雨水沖刷侵蝕會形成再次塌陷破壞。對這類裂縫進行填實碾壓可防止再次塌陷破壞。

表5-7 工作面開采和地表塌陷面積及萬噸煤地表塌陷面積

註:①煤容重取1.35t/m3,工作面回採率取64.4%(大柳塔12032工作面數值),但礦區工作面回採率為65%~94%,平均為88%。

②即萬噸煤地表塌陷公頃數。

③據神木縣地質災害調查資料,到2001年底大柳塔礦產煤3676×104t,地面塌陷7700872m2,即萬噸煤塌陷指數為0.21ha,與全國均值0.2ha持平。

④據神木縣地質災害調查資料,到2001年底榆家梁礦產煤500×104t,地面塌陷552000m2,即萬噸煤塌陷指數為0.11ha,比全國均值0.2ha低45%。

綜上所述,可見:

(1)由表5-6 和圖5-8 可見,地表出現的最大傾斜處(x=0)傾斜值i(0)為41mm/m,下沉值W(0)=1128mm,是最大下沉值Wo=2255mm的1/2,此點的曲率值為K(0)=0;且當x<0時,K(x)>0,下沉曲線上凸;x>0 時,K(x)<0,下沉曲線下凹,傾斜出現最大值的地表點(即x=0 的地表點)是下沉曲線由凸變凹的轉折點,該點上的曲率值為0,稱為下沉曲線的拐點(D點)。

(2)地表的主要移動和變形值均發生在x=-γ~+γ的范圍內,稱γ為主要影響半徑,主要影響半徑γ與采深H0和主要影響角β的正切tgβ有關,

,礦區地表的主要影響半徑平均值為55m。

(3)不考慮頂板的懸臂作用時,下沉曲線的拐點在實際煤壁A的正上方,而頂板的懸壁作用是存在的,拐點D在假想煤壁B的正上方,故So實際上是由懸壁作用引起的拐點偏移距離,稱之為拐點偏距,礦區地表移動平均拐點偏距為30m,假想煤壁為采空區的計算邊界。

(4)神東礦區三個實測工作面萬噸產量地面塌陷面積為0.35~0.42ha,礦區平均值為0.387ha,比全國萬噸煤產量地面塌陷面積平均值0.2ha幾乎高出1倍,主要原因是工作面采深小、煤層采厚大。

(5)根據神東礦區有關開采參數及鬆散層和基岩移動角數值,設定了兩個地表保護面積5×100m2及5×320m2,作出相應的保護煤柱,估算出前者的壓煤量為16×104t,後者為24.8×104t,留設保護煤柱使部分煤炭留在地下暫時或永遠無法采出,造成大量煤炭資源的浪費,因此,對於一般村鎮居民點和耕地是否留設煤柱加以保護,或者遷移部分人員並徵用相關土地,就需進行全面的技術經濟分析。

5.4.3.4 礦山廢棄土地的復墾

礦山開采過程中,產生了大量的廢渣和廢石,排放壓佔了大量土地,廢水排放、廢渣揚塵污染了土地,也嚴重損害了周邊土地經濟價值,嚴重者會喪失耕地功能。因此,從保護環境及土地價值方面出發,必須在生產過程中對破壞與壓占的土地盡可能地恢復治理,消除污染危害。在礦山閉坑後對廢棄的土地進行全面的恢復治理,恢復其使用價值,重新作為農業、林業、牧業、漁業、旅遊業或工業、城鄉建設用地。

對破壞土地的復墾,是將礦山建設、開采過程中因挖損、壓占、塌陷破壞的各類廢棄土地,通過採取工程措施或生物措施,使其重新恢復到可供利用狀態,並加以利用的一種活動。從廣義上講,礦山土地復墾是采礦工程的延續和組成部分,最佳的復墾方法與采礦工藝密切配合,統一規劃,協調進行,既滿足生產需求,又符合復墾的需要,從而達到礦產資源開發與環境保護雙贏的目標。土地復墾已成為土地開發利用活動的重要組成部分,是土地資源可持續利用、緩解人多地少的矛盾、改善生態環境的重要措施。

根據采礦方式、礦區地形和氣候條件,因地制宜地選擇適合本礦區的土地復墾方式。按照礦山土地復墾對象的不同,主要有塌陷區復墾、廢渣堆場復墾、露天礦采場復墾、尾礦庫復墾等;按復墾主要用途分有農業復墾、林業復墾、建設用地復墾、休閑復墾等。

5.4.3.4.1 塌陷區復墾

礦區地面塌陷和地裂縫破壞大量良田,毀壞村舍和地面建築物,造成礦區生態環境惡化。礦山企業和受災居民的矛盾愈來愈嚴重,已成為社會不穩定的因素之一。合理整治礦區塌陷、地裂縫區,是當前亟待解決的重要課題。由於采礦塌陷的土地資源配置不盡合理、採煤塌陷地的權屬不清、復墾政策與管理機制不健全、復墾資金渠道不落實、復墾理論遠遠落後於實踐等問題,致使採煤塌陷土地的復墾工作困難重重、舉步維艱。地下開采引起的塌陷區,因其所在地區的地勢地貌、水文氣象等條件的不同,對土地的破壞程度和復墾方法均有所不同。對於山地和丘陵地帶,只要將局部的塌陷漏斗或塌陷坑、裂縫進行填培並加以平整,即可恢復原來的地形地貌。對於平原地區,若潛水位較低,地區降雨較少,塌陷區不會常年積水,復墾時只需進行回填和鋪墊表土,即可進行種植或做他用。若潛水位較高或降雨較多,塌陷區會常年積水,復墾時需排除積水或整治水面及周圍環境,用於養殖及游覽。

通過礦井回填系統,將地面矸石山和洗煤廠外排的矸石用風力充填和水力充填法回填采空區,既可減少岩層和地表移動,降低地表沉陷的目的,又可大量消耗煤矸石、減少地面污染,還可起到防止煤層自燃發火的作用。德國、蘇聯、捷克常用此法,焦作礦務局也曾採用此法回填采空區,得到很好的效果。

圖5-8 煤礦區土地復墾魚刺圖

我國對地面塌陷裂縫的治理主要是通過對塌陷區的開發利用和綜合治理實現的。從20世紀80年代初開始,有規劃地對塌陷裂縫區開始進行復墾,在淮北、淮南、徐州、大屯和平頂山等煤礦區取得了一定成效和經驗,提出了許多綜合治理模式(圖5-8)。徐州龐庄煤礦在分層充填、分層振壓塌陷區矸石地基上,建造了一層或兩層農村住宅627 棟共6.9×104m2,並經受了地下兩層煤、4個工作面的開采影響,房屋無一損失。綜合防治地面塌陷和地裂縫的辦法包括:①煤矸石粉煤灰充填;②取土復墾;③剝離復墾;④綜合利用塌陷地;⑤生態養殖治理塌陷地等,如圖5-9 所示。固體廢物作充填材料兼有掩埋廢物和復墾塌陷區的雙重效益。如淮北岱河煤礦將下沉深度5m的塌陷區充填的矸石地基強夯後,建起1650m2的四層大樓供工會、幼兒園、礦區中學使用。但是,煤矸石和粉煤灰一般只佔回填塌陷區總面積的20%,因此,還必須採用非充填方式來復墾部分塌陷區。非充填復墾主要是採取挖深墊淺的辦法對塌陷區進行綜合整治,將塌陷盆地底部深挖成能蓄水養魚的深水池塘,使其同時具有蓄洪和澆灌功能,周圍坡地可改建為水平梯田。我國西北大部分地區屬黃土高原和丘陵地區,塌陷後地形地貌無明顯變化,所破壞土地如果需要耕種的話,只要將局部漏斗式塌陷坑和地裂縫進行充填平整即可。

陝西與內蒙古接壤處的神東礦區,建成了5座排矸廠,集中處理煤矸石。採用分層排放、填溝造地方式,上覆黃土,平整後種樹種草,使矸石山變成綠地。寧夏煤礦區通過收集資料,調查訪問、地面物探、鑽探等查明歷史至今的采空區范圍,進行穩定性分析和跟蹤觀測,掌握地面塌陷與塌陷發生的規律,對其發生的區域、范圍、深度、時間和速度進行認真研究分析,提出預測預報。對於地面要求盡量減少塌陷的區域,採用條帶式、房柱式等開采方法採煤,還可採用鑽孔離層注漿、煤矸石回填等方法充填采空區,避免或減少覆蓋岩層沉降。對已經發生塌陷的區域,可利用煤矸石、電廠粉煤灰和少量的生活垃圾回填,進行生態環境恢復和農業土地復墾,在地面積水區養魚、修建景點等多種辦法治理。如寧夏石嘴山用現存的矸石,採用平翻方式充填塌陷區,營造出多處綠化和建設用地。

5.4.3.4.2 排渣場復墾

礦山棄土棄渣、廢石排放,占壓了大量土地,其本身又是礦區的重要污染源,對大氣、水體產生污染,同時還引發滑坡、泥石流等地質災害。排土場復墾就是整治廢石堆場,恢復土地,進行種植,控制或消除廢石場對周圍環境的污染。排土場在設計時就應考慮未來的復墾工作,在剝岩時要將表土層與廢石分別採集和堆放。在復墾時根據排土場的位置、形狀、廢石性質和水文氣象條件,因地制宜地確定復墾方案。

5.4.3.4.3 露天礦區復墾

露天礦開采初期就要考慮將來的采區復墾工作,將礦床之上較為肥沃的表土層剝離單獨堆放,盡可能保持原有土壤結構。在采空區回填時,將大塊廢石或有害岩土置於礦坑底層,表層鋪上原來的表層土,或另取適宜耕作的新土覆蓋,經平整後選擇合適的植物進行栽種,或作他用。

整治露天礦開采土地破壞的有效措施之一就是把土地復墾作為整個露天礦開采工藝中的一個環節。比如我國建材601金剛砂礦的開采順序是:表土剝離——表土儲存——采礦——選礦——尾礦回運並充填采空區——表土鋪敷——整平及渠道修築,而後交農民施肥種植。采礦、剝離及復墾方法如圖5-9所示。

圖5-9 采礦、剝離及復田方法示意圖

1—覆土堆;2—含礦層;3—已恢復農田;4—回填廢石;5—紅色砂岩

復墾作業就是將廢石和覆蓋土送入內排土場(采空區)中,要求盡可能與開采前地面標高一致,特別是表層種植土應保持原有土壤結構,能種植作物。該礦原先只採礦不復墾,開采後礦區成了三山(表土山、廢石山、尾礦山)兩池(水池、尾礦池)一無(無良田)區,造成工農關系緊張,如不復墾,礦山則無法繼續生產。開始復墾時只是進行堆山填坑搬土,效益差,費用高(3萬元/ha),採用開采復墾相結合的復墾法後,費用降低到0.45萬元/ha,效益提高。

晉陝蒙接壤的准格爾煤田位於乾旱的黃土高原地區,礦區所在區域水土流失嚴重,地表支離破碎,植被稀疏。在礦區搗蒜溝進行了綜合整治工程試驗。搗蒜溝原是一條自然沖刷溝,露天煤礦開采將最初剝離物填充此溝,形成梯形台階式區域。搗蒜溝堆土場總排棄量為75.28×104m3,堆土場平台總面積為2×104m2,4個邊坡總面積為1×104m2

神東礦區馬家塔露天煤礦復墾建設的新思路是治理與經營互相促進、協調發展。復墾採取邊剝離邊回填的採煤方式,分層回填,廢石生土在下,表土在上。回填後形成復墾區面積113.33×104m2。1999年秋季,在復墾區20ha土地上墊紅泥0.2m,分別種植了蔬菜、玉米、土豆、葵花、蕎麥、優質牧草等,長勢良好,效果顯著。同時利用氧化塘處理後的污水作為水源,針對復墾區土壤保水能力差的特點,在復墾區全面布設灌溉管網,採取固定式或移動噴灌,持續有效地提高了土壤與近地層空氣的濕度,解決了復墾綠化中的乾旱制約難題。馬家塔復墾區目前已形成治理與經營互相促進、協調發展的格局。綠化覆蓋率達到80%,較開采前提高了15.8倍。共種植牧草46.7ha,栽植灌木10萬株,喬木2萬株。被水利部評為全國生態建設示範基地,被內蒙古自治區旅遊局評為AA級旅遊區,一個新型現代化的人造生態園已基本形成。

5.4.3.4.4 尾礦庫復墾

尾礦庫在停止使用後,由於水分的蒸發和排泄,表面乾涸而暴露在空氣中,形成一層不透氣的外殼,整個尾礦庫類似一個沼澤地,承載能力很低。在大風季節,乾旱地區的尾礦庫庫區籠罩在灰濛蒙的粉塵之中,風停之後,農作物和建築物上飄落灰塵,影響居民健康,這也是西北地區日漸強烈的沙塵暴的一種物源。因此,尾礦庫的復墾工作首先要處理和改善其表面結構,提高其抗風蝕能力。一般的復墾步驟是:挖松表面的堅硬外殼,表層挖松後用碎石充填,對酸性尾礦用石灰石中和其酸性,對鹼性尾礦用白雲石中和其鹼性,平整尾礦堆表面,鋪墊表土並摻入中和葯劑和肥料,種植或作它用。當尾礦及殘留葯劑中含有毒物質時,要研究這些有害物質的危害及其防治措施。這樣,既緩解了城市用地緊張,又有效地解決了尾礦庫粉塵污染大氣的問題。

⑦ 談談對煤礦開采對礦山環境損害的類型有哪些

1、礦山大氣的污染
2、礦山水體的污染
3、礦山雜訊的污染
4、礦山岩體移動與植被剝離的生態破壞

⑧  中區段地質災害類型及分布

中區段地形上位於第二階梯東段的鄂爾多斯高原、黃土高原和山西山地,間夾臨汾盆地,海拔標高400~1600m,地形高差對比大,大部分地段溝壑縱橫,地形地貌條件復雜。屬溫帶大陸性半乾旱季風氣候,降水量由西往東遞增,季節分配不均。生態環境比較脆弱。本區段全為黃河流域,西部水系稀少,東部則有數條一級支流匯入。區域大地構造位置距板塊作用帶邊界較遠,除臨汾盆地和東西邊沿外,地殼穩定性較好。西部人煙稀少,東部人口密度較大,且對地質環境干擾破壞強烈。人類活動主要是大量開采固體礦產(以煤為主,還有鐵、鋁土、粘土等),西部還有過牧和濫樵(挖)。水土流失十分嚴重。

本區段地質災害類型最多,主要有滑坡、崩塌、泥石流和洪水沖蝕、風蝕沙埋、采空塌陷、黃土濕陷和潛蝕;局部地段還有地震液化、鹽漬土、瓦斯爆炸和煤層自燃等災害。以下分別論述。

一、滑坡和崩塌

由於本區段自然地理和地質環境條件的特殊性,滑坡和崩塌是最主要的地質災害,主要分布於黃土高原和山西山地區。黃土高原區梁峁起伏,沖溝發育,溝深坡陡;黃土深厚,垂直節理發育,濕陷性較強。山西山地區的呂梁山、太岳山、太行山與汾河、沁河相間排列,溝谷發育,地形起伏高差對比大;基岩裸露,大多上覆以薄層黃土。所以在強降雨和河水沖刷等觸發因素作用下,易發生滑坡和崩塌,二者常相伴而生,是這兩種地質災害的易發區和危險區。

在評估區內共發現滑坡116處;崩塌在山西段內有45處,陝西段內有6個地段52處,總長約46km,寧夏段有8處,發育極為普遍。

(一)滑坡

黃土高原區的滑坡絕大多數為土體滑坡,以陝西段居多,有83處之多,山西段有14處。滑坡的成因模式可分兩種:一種是順黃土與下伏中生界基岩面或新近系紅土的接觸面滑動的,一般分布於河流的沖刷岸或梁峁溝壑區(圖4-2(a)、(b),它的規模較大,滑動面較深;另一種是在黃土殘塬和梁峁邊緣,因坡體陡立,黃土順坡向的垂直節理又很發育,在雨水下滲時導致潛蝕作用而觸發滑坡(圖4-2(c),這種滑坡的規模一般較小,屬淺層滑坡。在陝西段順下伏基岩面滑動的滑坡較多,且多為大中型滑坡。對管線有較大影響的滑坡有:棗樹坪滑坡(DD143—DD144)、王家院滑坡群(DD279—DD281)、梁家渠滑坡(DD288—DD289)和寒砂石水庫滑坡(DE003—DE005)等4處。

圖4-2滑坡形成模式

山西山地區發現滑坡19處,其中基岩滑坡8處,土體滑坡11處。基岩滑坡發生在石炭、二疊系灰岩、砂泥(頁)岩互層地層中,有順層滑坡,也有切層滑坡。它們密集分布於陽城縣城北、東約20km地段內(EH035—EH114)。滑坡的成因與降雨、河水沖刷和人工築路切坡等有關,有4處穩定性較差,其中1處距管線僅20m(EG026附近),影響較大。土體滑坡的成因與黃土高原區類似。對輸氣管線影響較大的有蒿峪村西滑坡(EH086附近)、杜老凹滑坡(EF022)、老炭窯滑坡(EF054)等3處。

(二)崩塌

黃土高原區崩塌主要是黃土體的崩落,而山西山地區則是基岩崩塌。鄂爾多斯高原(寧夏境內)也有少量溝岸坍塌。

黃土高原區崩塌一般分布於各河流分水嶺的線路越梁地帶,地貌以黃土梁峁為主,由於沖溝溯源侵蝕和溝谷底蝕強烈,高陡邊坡隨處可見。黃土的垂直節理發育,在高陡坡肩前緣的土體似懸臂梁板,在彎矩的作用下底部突然斷裂而發生崩塌(圖4-3(a)。還有一種情況是深切狹窄的河谷地段基岩出露,在河流側蝕和風化剝蝕作用下,下部的泥岩形成凹龕,上部較硬的砂岩懸空,產生拉裂縫,危岩體最終崩落下來(圖4-3(b)。清澗河河谷中三疊統胡家村組(T2h)和大理河河谷下白堊統洛河組(K1l),這種崩塌機制較多見。此外,各河流中上游地段岸坡多由黃土或階地堆積物組成,在曲流作用強烈的河段,沖刷岸坍岸現象較普遍。崩塌規模一般較小,但數量較多,對公路、管線工程危害較大。

圖4-3崩塌形成示意圖

山西山地區發現的34處崩塌都分布於基岩區,地層岩性是:中奧陶統上馬家溝組(O2s)厚層灰岩6處,中石炭統本溪組(C2b)灰岩2處,上石炭統太原組(C3t)和山西組(C3s)砂泥岩和灰岩4處,下二疊統下石盒子組(P1x)砂泥岩5處,上二疊統上石盒組(P2s)和石千峰組(P2sh)砂泥岩11處,下三疊統劉家溝組(T1l)細砂岩6處。在陽城縣城北、東分布較集中。崩塌一般分布於坡度大於40°和高度大於10m的陡坡地段,岩體陡傾的構造節理較發育,在坡緣部位追蹤形成拉裂縫,逐漸擴展,在暴雨、放炮炸石等觸發因素作用下發生崩塌。崩塌的規模也較小,一般數十至數百立方米,最大的一處是晉城市下河村(EJ001附近)崩塌體,為2.25×104m3。對輸氣管線有影響的有20處,有的為管線直接穿越,有的距管線僅數米至十餘米,而且目前處於不穩定狀態,危岩矗立,應予關注。

二、泥石流和洪水沖蝕

泥石流和洪水沖蝕是本區段輸氣管道沿線又一較發育的地質災害。

據調查,寧夏段有泥石流溝20條,主要分布在下河沿至古城子和鹽池縣東紅井子至陝西定邊縣紅柳溝鄉兩個地段內。前一地段主要為稀性泥石流型。泥石流溝都發源於南部基岩山區,溝道長,流域面積大。出山區後進入並深切山前沖洪積傾斜平原,在傾斜平原溝口形成小的堆積扇,大部分物質沖入黃河。泥石流的固體物質主要來源於傾斜平原,以砂礫石和泥沙為主。這一地段是寧夏段沿線泥石流較嚴重的地段。古城子至紅井子還有5條稀性泥石流溝。輸氣管線一般都布設在堆積區,且與溝道直交。後一地段為泥流型,上紅柳溝南側為侵蝕嚴重的白堊系砂岩構成的基岩丘陵,山前堆積的粉土厚達50m,樹枝狀沖溝極為發育,侵蝕深達15~45m。因寧夏段管線經過地段人煙稀少,未有泥石流遭致人民生命財產損失的報道。

陝西段泥石流分布於靖邊縣馬路壕東南的黃土高原區,是當地常見的地質災害,多發生於每年7~9月的雨汛期,往往由強降雨激發,突發性強,來勢迅猛,致災力強。顯然,對擬建的輸氣管線危害較大。由於黃土高原溝壑縱橫,溝深坡陡,沖溝溯源侵蝕極強;土體結構疏鬆,崩塌、滑坡發育,皆為泥石流提供了動能優勢和豐富的固體物質來源。在強降雨激發下,極有利於泥石流的形成。根據泥石流所含固體物質的顆粒級配特徵,常以泥流形式出現,有稀性、粘性和塑性之分,以前兩種出現幾率較高。暴雨時在溝谷中時常可出現含沙量大於600~900kg/m3的洪流,由密布的毛溝、支溝流向干溝和河流匯集,形成強大的泥流,潰堤毀壩、淤塞水庫,分割壩地,造成嚴重危害。

山西段泥石流也較發育,在評估區內發現泥石流溝15條。根據物源成分不同,可分為泥流、水石流和泥石渣流三種。泥流主要分布於西部黃土高原區,特徵與陝西段類似。水石流主要分布於沁水與浮山兩縣交界處,當地為林場,水土流失較弱,物源主要為溝谷兩側的基岩崩塌堆積物。泥石流溝的流域面積不大。泥石渣流集中分布於沁水、陽城兩縣的采礦區,固體物質是堆積於溝谷中的煤矸石和鐵礦棄渣,一般流域面積不大。據調查,泥石流已造成一定災害。輸氣管線有7處與泥石流溝相交,應予關注。

三、風蝕沙埋

寧夏段和陝西段西部管線經過地段,正好處於毛烏素沙漠與黃土高原的過渡地帶,生態環境脆弱,植被稀少,加之當地亂采濫挖甘草、過度放牧和不適當開發礦業,數十年來土地沙化十分嚴重,荒漠化加劇。因此風蝕沙埋也是需關注的一種地質災害。

區段內沙丘以固定和半固定草叢沙丘為主,寧夏段的沙丘主要分布於中寧縣雙井子至鹽池縣大水坑的丘間窪地中,呈星點狀散布於管線兩側,有些管線則直接穿越其間,一般丘高1.5m以下,由於風蝕作用,許多沙丘呈半丘狀。丘間為平鋪沙地,沙丘密度30%左右。

陝西段的沙丘分布於定邊縣紅柳溝鎮至靖邊縣李家梁地段內,幾乎連續展布在長城以北地域。在定邊縣的賀圈、帳房灣、羊圈有幾處移動沙丘,丘高一般3~10m,沙丘主導移動方向東南,平均移動速率4~6m/a。在靖邊縣附近,黃土被沙丘掩埋,甚至在梁峁、坡面上有薄層低緩新月形沙丘分布,丘高3~5m,風蝕嚴重。輸氣管線基本上都在距沙丘以南3~8km地段的平鋪沙地上布設,受風蝕和沙埋影響較小。只有靖邊北側一段長約20km的管線布設於沙丘上,必須採取必要的防護措施,以免風蝕發生。

四、采空塌陷

地下開采固體礦產資源所形成的采空區,在一定的地質結構條件下,采空區上覆岩層在自重和圍岩應力作用下會導致頂板冒落和頂底板閉合,而引起上覆岩體的變形破壞,進而產生地面開裂和沉陷。一般煤礦地面塌陷是累進性的,而某些圍岩堅硬的金屬礦山則往往是突發性的。煤礦等層狀礦產采空區地面塌陷機理是:一般地下開采採用柱式采空區的空間結構(圖4-4)。若某些礦柱實際強度低於設計承載力,或在長期承載過程中因風化、地震等作用,承載力下降,使得這些礦柱先遭到破壞,它們所擔負的荷載就要轉移到相鄰的礦柱上,從而也使它們相繼遭受破壞,累進性破壞將導致整個礦柱系統的破壞。礦柱破壞的形式是采空區頂板冒落。頂板冒落引起上覆岩層變形破壞,自下而上可劃分為冒落帶(Ⅰ)、裂隙帶(Ⅱ)和彎曲帶(Ⅲ)三個帶(圖4-5)。由於采空區面積、採掘厚度和礦層埋深不同,上述三帶不一定同時存在。當採掘厚度大而礦層埋深又較小時,冒落帶可直達地表而形成塌陷坑。自礦層開采至地面出現沉陷,需要一定的時間過程,它受諸多因素影響。地表沉陷窪地面積一般較采空區大。

本區段固體礦產資源豐富,主要是煤礦,還有鐵礦、鋁土礦和粘土礦等。

煤礦主要分布在山西境內,分布廣且蘊藏量很大。含煤地層主要為石炭繫上統的太原組和山西組。太原組含煤5~8層,山西組含煤4層;有的煤層厚達7~8m,穩定可采。現正大量開采,均為地下採掘方式。據調查,評估區內發現有大小煤礦159座,其中輸氣管線直接在采空區上部通過或距管線較近的礦山有25座之多,總長度有37km。尤其是沁水煤田礦山密布,開采歷史悠久,開采方式落後,正在開采和已閉坑的礦山遍布地下采空區,其分布大多無檔案記載。在臨汾以西的河東煤田,在堯都區和蒲縣煤礦也是密集分布,遍布地下采空區,在輸氣管線兩側連接成片。陝西境內的煤礦在管線經過地段集中於子長和永坪一帶。含煤地層為三疊繫上統瓦窯堡組,共含煤層7~15層,單層厚度最大3m左右,層位穩定。開采歷史也很悠久。目前子長礦區有45座小煤礦,永坪礦區有5座小煤礦,開采方式原始落後,無序開采現象嚴重,采空區大多無檔案記載。輸氣管線直接在采空區頂部或附近通過的總長度有5km左右。寧夏境內位於西部中衛縣的下河沿煤礦,含煤礦地層為石炭繫上統的太原組和土坡組,目前可採煤層4~8層。煤層分布於輸氣管線南部,對管線無影響。

圖4-4采空區礦柱系統示意圖

圖4-5采空區冒落引起上覆岩層變形與錯動的分帶

鐵礦也主要分布在山西境內。礦體賦存於石炭系底部,屬風化殘積型窩狀礦體,儲量小而不穩定,但開采歷史悠久。目前,多為鄉村和個體開采。據調查,在評估區內有53座鐵礦。由於礦坑埋深淺,易引發地面塌陷;但因規模小,對輸氣管線影響較小。

此外,本區段在河南西北部太行山區還有鋁土礦和粘土礦,在輸氣管線經過地段已發現有60多個礦洞,都是私人開採的小礦山,采深很淺,地面塌陷嚴重。目前雖已停采,但它對管線的施工和運營帶來了潛在的危險。

由上述分析可知,對輸氣管線將遭致嚴重危害的是煤礦采空塌陷。從地面調查來看,采空塌陷最嚴重的地段在山西的浮山、陽城二縣境內,浮山縣後交煤礦和陽城縣柏山煤礦有三處塌陷坑,塌陷面積總計達36×104m2,最大深度6m,已造成3024畝農田和2580間民房破壞,一座學校被迫搬遷,經濟損失嚴重。輸氣管線正好在塌陷坑地段通過。采空塌陷還導致產生地裂縫。在蒲縣—臨汾段、浮山後交煤礦、陽城、澤州等地均發現采礦地裂縫。已造成1995間民房開裂,1300畝耕地荒蕪,約200戶居民搬遷。

在本區段煤礦區還有瓦斯爆炸和煤層自燃災害。陝西子長縣道園煤礦1995年發生瓦斯爆炸,死亡12人;紅石峁溝口舊煤窯和南家咀煤礦也都發生過瓦斯爆炸事故。它們距輸氣管線都較近。寧夏下河沿煤礦歷史上有煤層自燃記載,十幾年前還有自燃跡象。山西沁水煤田的南端,陽城、澤州段為高瓦斯煤礦,曾發生過多次瓦斯爆炸事故,在澤州段犁川一帶還有煤層自燃現象。

采空塌陷對輸氣管線工程會導致嚴重後果,甚至是致命的危害,應引起高度重視。由於不少地段老煤窯較多,目前鄉鎮企業和私人經營的小煤礦又無序開采,采空區的空間分布范圍很難查明。此次調查雖在重點地段進行淺層地震勘探,初步查清了一些采空區,但仍然不能滿足工程設計的要求。今後,應在陝西段的子長煤礦焦家溝—王家灣段(DD184—DD277),山西段的蒲縣—臨汾煤礦密集分布區(EC119—ED073)、浮山後交煤礦區(EF043—EF056)和澤州煤礦密集分布區(EJ002+1—EJ058)進一步加強勘查。

五、黃土濕陷和潛蝕災害

黃土濕陷和潛蝕往往相伴發生,一般是突發性的,對建築物和人民生命財產構成危害,是黃土類土分布地段的一種特殊地質災害。

(一)黃土濕陷

本區段地處黃土高原東緣和山西山地區,地面普遍分布有以上更新統(Q3)風成黃土為主的黃土類土,其中Q3、Q4黃土具濕陷性,且多屬自重濕陷類型。據統計,輸氣管線經過黃土連續分布地段,陝西段長185km,山西段長71km(陝西靖邊馬路壕至山西臨汾盆地以西)。分布厚度大,主要為梁峁溝壑地形,濕陷性最為強烈。臨汾盆地以東,浮山段較強,往東逐漸減弱。沿線黃土因其形成時代、成因、結構和所處地貌位置不同,濕陷性有所差異。一般情況是:Q3風成黃土濕陷性最強,屬中等—強烈濕陷;Q4坡積—沖積黃土狀土,濕陷性弱些,屬中等濕陷;而Q2黃土則為輕微濕陷—無濕陷。表4-1列出了陝西和山西段黃土濕陷性指標。

表4-1黃土濕陷性指標

有關黃土濕陷的形成機制有多種解釋,其中「加固凝聚力降低或消失的假說」較有說服力。黃土濕陷是一個復雜的物理化學過程,是由黃土固有的特殊成分和結構以及外界誘發條件共同作用的結果。濕陷性黃土含有一定量的碳酸鹽膠結物和大孔性的結構特徵,是濕陷作用的內因,而浸水和加壓則是外部條件。當黃土浸水受壓後,水膜楔入和水的溶解作用,使由鹽類結晶膠結產生的加固凝聚力降低甚至消失,並使土粒散化。使處於大孔性而呈欠壓密狀態的土體發生沉陷,結構遭到破壞。

黃土濕陷導致的災害是多方面的,有地表大面積不均勻下陷、地裂縫,還可誘發滑坡和崩塌的發生。因此它對輸氣管線可構成危害。

(二)黃土潛蝕

黃土潛蝕分布地域與濕陷性黃土基本一致,多見於Q3、Q4黃土中,形成陷穴、落水洞、盲溝、漏斗、豎井及天生橋等「黃土喀斯特」現象。潛蝕的發育受控於地形、地層及降雨等因素。在河谷階地及壩、

地等地形平緩處,由於降雨積聚下滲,能形成直徑幾米至十幾米、深度1m左右的碟形陷穴。根據陝西段的調查資料,輸氣管線沿線潛蝕與地形、黃土地層關系見表4-2。

表4-2潛蝕陷穴與地形、黃土地層關系統計表

由於潛蝕的形成與黃土濕陷性密切相關,加之其作用過程較為隱蔽,常有暗溝分布,一旦突然陷落,將給輸氣管道的安全帶來嚴重後果。

六、其他地質災害

(一)地震液化

分布於寧夏段黃河沖積平原和山西段臨汾盆地內。該二地段均為地震烈度Ⅷ—Ⅸ度的強震區,歷史上曾多次發生過7~8級大地震,是輸氣管線經過的地震危險區。

寧夏段地震液化分布於中衛縣境的黃河沖積平原一級階地上,岩性為Q4的粉土、粉砂和細砂,埋深1.5~5.3m,潛水位埋深0.8~3.0m。經現場標准貫入試驗判別,CA123—CA136和CA164—CA170液化等級輕微,CA144—CA164液化等級中等。

山西段臨汾盆地地震液化分布於汾河河漫灘和一級階地上,岩性為Q4的中細砂和粉砂;夾有粉土和粉質粘土,潛水位埋深0.7~2.6m。經現場標准貫入試驗判別,在管線ED089—ED103長約4km的地段內,Ⅶ度地震力條件下液化等級為中等—嚴重。該地段史藉上曾有地震時噴砂冒水等砂土液化現象的描述。顯然,輸氣管線的安全將會受到嚴重影響。

(二)鹽漬土的腐蝕和鹽脹災害

分布於寧夏段和陝西段內。經查明,寧夏段鹽漬土有三段。其中中衛縣黃河沖積平原為碳酸(鹼性)鹽漬土和硫酸鹽漬土相間分布,管線長度約42km,危險性小;中寧縣古城子西的沼澤地為硫酸鹽漬土,長約0.75km,危險性中等;鹽池縣兩個鹽鹼灘窪地為硫酸鹽漬土,長約3.5km,危險性大。陝西段鹽漬土主要分布在定邊縣安邊鎮屈園子—郝灘鄉四十里鋪(DA056—DA076)及靖邊縣小灘則等地段,累計管線長度約21km。鹽漬土易溶鹽含量一般為0.34%~1.73%,為硫酸鹽,經判定,屈園子—四十里鋪以中度鹽漬土為主。

(三)地面沉降

輸氣管線臨汾段(ED089—ED103)經過地面沉降區,沉降中心位於臨汾城西汾河谷地。累積最大沉降量240mm。該地段地面沉降是由於超采中深層地下水引起的。自20世紀70年代中期開始,地下水開采強度逐漸加大,由於超采,地下水位持續大幅度下降,至1986年已形成一個波及面積超過50km2的橢圓形降落漏斗,中心水位較1978年下降了30m,年降幅近4m。1986年以後,水位仍以平均3m/a的速率下降。目前該降落漏斗中心最大降深已達80m。地面沉降現狀條件下不會對輸氣管線造成危害。

⑨ 開采方式不同導致的礦山環境地質問題

西南地區礦產開發主要有兩種方式:露采礦山和井下開采礦山。不同的開采方式,形成的礦山環境地質問題不同。

1.露天開采導致的礦山環境地質問題

西南地區露采礦產的種類較多,有釩鈦磁鐵礦、鐵礦、錳礦、煤礦、鉻鐵礦、銅礦、鉛鋅礦、金礦、稀土礦、錫礦、磷礦、硫鐵礦、各類非金屬礦等。導致的礦山環境地質問題有采場、廢石場土地破壞與佔用,地形、地貌景觀影響和破壞,采場崩塌、滑坡、石漠化和張裂,尾礦庫、廢石場滑坡、泥石流以及廢石、尾礦、廢水污染等。露采導致的礦山環境地質問題的主要因素如下:

1)露采礦建設期間。礦山生產區、辦公區以及生產基礎設施和交通運輸系統的建設都佔用土地,建設過程中必將對礦區原有的土地、水系、植被和大氣等生態環境造成一定影響。

2)露采礦生產期間。首先是礦區開采上覆岩層和表土的剝離,需進行大規模的開挖,其開挖面積和速度取決於露采礦的規模和生產能力。開挖范圍內原有的土地和生態環境將徹底破壞,同時可能對周圍的土地、水文、植被和大氣造成不利的影響,其中最主要的是水土流失,地下水位降低和生態環境惡化。其次是開挖出來的土石方需另地存放,即大量剝離物存放場要壓占土地,其壓占土地的面積則取決於剝離量和堆存方式,這與井下開采時煤礦煤矸石排放場的情況相似,但其堆放量和佔地面積將遠比煤矸石多。壓占區的土地和地面附著物將被徹底掩埋而喪失,對生態環境的影響程度則與排放場的位置和剝離物本身的理化性質有關。

3)建材非金屬採石場對植被和生態環境的破壞比其他礦產露天開采更為嚴重。這類礦山企業點多面廣,開采一般沒有設計或保護措施,倚坡開挖,露天作業,隨意性很大。特別是在一些石灰岩採石場,往往是多用途開采,一方面直接將荒料運走,作為建築材料或水泥生產原料;另一方面就地燒制石灰,並對生石灰進行粉碎和過篩,這樣不但將開挖區植被全部破壞,而且在風的作用下將石灰粉吹到周邊一定范圍內把植被燒死。另外頻繁的放炮震動對環境也造成一定的影響。在主要交通干線附近開採石料易形成高陡斜坡,人為造成崩塌、滑坡地質災害隱患,對交通干線形成威脅。如西藏地區露采礦山主要為砂金礦,對土地資源造成了破壞,特別是牧區草場破壞嚴重,形成許多深坑和亂石堆,並造成河流阻塞和泥石流地質災害隱患。

2.井下開采導致的礦山環境地質問題

西南地區井下開採的典型礦山有四川天寶山鉛鋅礦、丹巴鎳礦、廣旺煤礦、雲南易門銅礦、大紅山鐵銅礦、都龍錫礦、貴州萬山汞礦、六盤水煤礦、重慶南桐煤礦和西藏澤當銅礦等。導致的礦山環境地質問題有地面塌陷、廢石場土地破壞與佔用,地裂縫、建築物開裂、下沉、礦坑突水、區域水均衡破壞、尾礦庫潰壩泥石流、礦坑水、尾礦、廢石污染等。井下開采導致的礦山環境地質問題的主要因素如下:

1)采空區塌陷可使塌陷范圍內的地表發生垂直沉降。如果地下水水位較淺,或有外來水源排入,或因大氣降水,就可能造成塌陷區積水而淹沒土地。

2)采礦沉陷區沉降和移動不均衡,使沉陷區產生不同的附加傾斜、彎曲、裂縫甚至滑坡或崩塌,使土地本身可利用性及其附著物受到破壞。地面建築物、構築物、水利、交通和電力等工農業生產設施因采礦塌陷而遭受不同程度的破壞。

3)采礦塌陷引起的地表沉降和裂縫可能在一定程度上改變地表徑流方向和匯水條件,使部分地表水沿裂縫滲入地下,同時也可使地下水沿上覆岩層裂縫滲入采空區或深部岩層,從而使礦區地表水減少,潛水乾涸,井、泉斷流,同時使地下水位降低,甚至使上覆岩層中的含水層遭受破壞。地表水通過采動裂縫滲入地下的同時,地表污水也隨之進入含水層,從而污染地下水源;地下水通過采動裂縫進入采空區時,又可能受到采礦污染;礦坑水通過排水系統排放到地表水系中又使地表水系受到污染,因而礦區水環境將不斷惡化。而水環境的惡化又將進一步導致整個礦區生態環境的惡化。

4)井下開采形成的固體廢棄物如煤矸石、廢石、廢土等,占壓、破壞土地資源,雨季還易誘發滑坡、泥石流地質災害。

⑩ 因礦山開采對環境的破壞分為幾類情況

地質損毀、環復境污染、景觀損毀三大類制情況。
在礦山開采中無論是否是露天礦,造成地表受開采沉陷影響的一個明顯的損毀特徵是什麼?
地表出現裂縫,嚴重時還將有塌陷台階出現,地表裂縫發
生的地段主要集中分布在煤柱、采區(盤區)邊界的邊緣地帶,以及每層淺部地帶。

熱點內容
三個字的電影名 發布:2024-08-19 09:10:03 瀏覽:417
台灣紅羊經典電影 發布:2024-08-19 09:02:17 瀏覽:767
搞笑電影范冰冰梁家輝開戰 發布:2024-08-19 08:53:18 瀏覽:917
免費午夜激情 發布:2024-08-19 08:42:15 瀏覽:831
40分鍾左右的英語電影 發布:2024-08-19 08:28:43 瀏覽:695
電影宋基美娜 發布:2024-08-19 08:27:04 瀏覽:942
宿舍都變成女的的電影 發布:2024-08-19 07:59:35 瀏覽:897
台灣恐怖片喪屍 發布:2024-08-19 07:57:21 瀏覽:179
免費觀看qq群 發布:2024-08-19 07:53:00 瀏覽:921
4級片名字 發布:2024-08-19 07:39:14 瀏覽:553