半導體方向包括哪些
❶ 半導體是什麼
顧名思義:常溫下導電性能介於導體與絕緣體之間的材料,叫做半導體.
物質存回在的形式多種多樣答,固體、液體、氣體、等離子體等等。我們通常把導電性和導電導熱性差或不好的材料,如金剛石、人工晶體、琥珀、陶瓷等等,稱為絕緣體。而把導電、導熱都比較好的金屬如金、銀、銅、鐵、錫、鋁等稱為導體。可以簡單的把介於導體和絕緣體之間的材料稱為半導體。與導體和絕緣體相比,半導體材料的發現是最晚的,直到20世紀30年代,當材料的提純技術改進以後,半導體的存在才真正被學術界認可。
半導體的分類,按照其製造技術可以分為:集成電路器件,分立器件、光電半導體、邏輯IC、模擬IC、儲存器等大類,一般來說這些還會被分成小類。此外還有以應用領域、設計方法等進行分類,最近雖然不常用,單還是按照IC、LSI、VLSI(超大LSI)及其規模進行分類的方法。此外,還有按照其所處理的信號,可以分成模擬、數字、模擬數字混成及功能進行分類的方法。
❷ 考半導體物理方向都有哪些研究所可以考
半導體研究所半導體研究所微電子學與固體電子學 合肥智能機械研究所合肥智能機械研究所微電子學與固體電子學 華中師范大學物理科學與技術學院微電子學與固體
❸ 半導體行業還有哪些可研究方向
個人感覺高功率,快速反應的半導體材料是一個方向,高功率脈沖技術使用的開關元件回都是氣體火花答器,通過擊穿氣體達到瞬間的大功率控制。但是噪音很大,污染也大。而半導體材料卻能在安靜的情況下導通,沒有輻射,沒有污染,高功率半導體這應該是個方向。另外半導體激光技術,可以使激光器功率更大,更加小巧。還有半導體製冷,都是很好的研究方向。
這應該使半導體的一寫拓展領域,也是新型的領域。比較有前途的。個人看法,僅供參考:)
❹ 想從事微電子(半導體)方向的工作!要學哪些課程!先學什麼再學什麼現在比較迷茫!請指教!
大方向主要有:
集成電路製造(半導體工藝,半導體器件)
集成電路設計內(底層電路設計(偏物理)--->SOC設計(偏編程)…)
MEMS(微機電系容統),需要非常雜的知識面
EDA,是介於製造和設計之間的一個比較獨特的領域,需要比較廣的知識面和編程能力
一般來說最基礎的四門課程包括:
半導體(器件)物理,半導體工藝,模擬電路,數字電路
❺ 什麼是半導體
半導體( semiconctor),指常溫下導電性能介於導體(conctor)與絕緣體(insulator)之間的材料。半導體在收音機、電視機以及測溫上有著廣泛的應用。
如二極體就是採用半導體製作的器件。半導體是指一種導電性可受控制,范圍可從絕緣體至導體之間的材料。無論從科技或是經濟發展的角度來看,半導體的重要性都是非常巨大的。
今日大部分的電子產品,如計算機、行動電話或是數字錄音機當中的核心單元都和半導體有著極為密切的關連。常見的半導體材料有硅、鍺、砷化鎵等,而硅更是各種半導體材料中,在商業應用上最具有影響力的一種。
分類:
半導體材料很多,按化學成分可分為元素半導體和化合物半導體兩大類。
鍺和硅是最常用的元素半導體;化合物半導體包括第Ⅲ和第Ⅴ族化合物(砷化鎵、磷化鎵等)、第Ⅱ和第Ⅵ族化合物( 硫化鎘、硫化鋅等)、氧化物(錳、鉻、鐵、銅的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物組成的固溶體(鎵鋁砷、鎵砷磷等)。
除上述晶態半導體外,還有非晶態的玻璃半導體、有機半導體等。
半導體的分類,按照其製造技術可以分為:集成電路器件,分立器件、光電半導體、邏輯IC、模擬IC、儲存器等大類,一般來說這些還會被分成小類。
此外還有以應用領域、設計方法等進行分類,雖然不常用,但還是按照IC、LSI、VLSI(超大LSI)及其規模進行分類的方法。此外,還有按照其所處理的信號,可以分成模擬、數字、模擬數字混成及功能進行分類的方法。
(5)半導體方向包括哪些擴展閱讀:
發展歷史:
半導體的發現實際上可以追溯到很久以前。
1833年,英國科學家電子學之父法拉第最先發現硫化銀的電阻隨著溫度的變化情況不同於一般金屬,一般情況下,金屬的電阻隨溫度升高而增加,但巴拉迪發現硫化銀材料的電阻是隨著溫度的上升而降低。這是半導體現象的首次發現。
不久,1839年法國的貝克萊爾發現半導體和電解質接觸形成的結,在光照下會產生一個電壓,這就是後來人們熟知的光生伏特效應,這是被發現的半導體的第二個特徵。
1873年,英國的史密斯發現硒晶體材料在光照下電導增加的光電導效應,這是半導體又一個特有的性質。
半導體的這四個效應,(jianxia霍爾效應的余績──四個伴生效應的發現)雖在1880年以前就先後被發現了,但半導體這個名詞大概到1911年才被考尼白格和維斯首次使用。而總結出半導體的這四個特性一直到1947年12月才由貝爾實驗室完成。
在1874年,德國的布勞恩觀察到某些硫化物的電導與所加電場的方向有關,即它的導電有方向性,在它兩端加一個正向電壓,它是導通的;如果把電壓極性反過來,它就不導電,這就是半導體的整流效應,也是半導體所特有的第三種特性。同年,舒斯特又發現了銅與氧化銅的整流效應。
很多人會疑問,為什麼半導體被認可需要這么多年呢?主要原因是當時的材料不純。沒有好的材料,很多與材料相關的問題就難以說清楚。
參考資料:
網路-半導體
❻ 什麼是半導體
鍺、硅、硒、砷化鎵及許多金屬氧化物和金屬硫化物等物體,它們的導電能力介於導體和絕版緣體之權間,叫做半導體。
半導體具有一些特殊性質。如利用半導體的電阻率與溫度的關系可製成自動控制用的熱敏元件(熱敏電阻);利用它的光敏特性可製成自動控制用的光敏元件,像光電池、光電管和光敏電阻等。
半導體還有一個最重要的性質,如果在純凈的半導體物質中適當地摻入微量雜質測其導電能力將會成百萬倍地增加。利用這一特性可製造各種不同用途的半導體器件,如半導體二極體、三極體等。
把一塊半導體的一邊製成P型區,另一邊製成N型區,則在交界處附近形成一個具有特殊性能的薄層,一般稱此薄層為PN結。圖中上部分為P型半導體和N型半導體界面兩邊載流子的擴散作用(用黑色箭頭表示)。中間部分為PN結的形成過程,示意載流子的擴散作用大於漂移作用(用藍色箭頭表示,紅色箭頭表示內建電場的方向)。下邊部分為PN結的形成。表示擴散作用和漂移作用的動態平衡。
❼ 半導體都包括哪些什麼都屬於半導體的范疇
半導體:常溫下導電性能介於導體(conctor)與絕緣體(insulator)之間的材料。
主要材料:
元素半導體:內鍺和硅是最容常用的元素半導體;
化合物半導體:包括第Ⅲ和第Ⅴ族化合物(砷化鎵、磷化鎵等)、第Ⅱ和第Ⅵ族化合物( 硫化鎘、硫化鋅等)、氧化物(錳、鉻、鐵、銅的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物組成的固溶體(鎵鋁砷、鎵砷磷等)。
技術科研領域:
(1)集成電路
它是半導體技術發展中最活躍的一個領域,已發展到大規模集成的階段。在幾平方毫米的矽片上能製作幾萬只晶體管,可在一片矽片上製成一台微信息處理器,或完成其它較復雜的電路功能。集成電路的發展方向是實現更高的集成度和微功耗,並使信息處理速度達到微微秒級。
(2)微波器件
半導體微波器件包括接收、控制和發射器件等。毫米波段以下的接收器件已廣泛使用。在厘米波段,發射器件的功率已達到數瓦,人們正在通過研製新器件、發展新技術來獲得更大的輸出功率。
(3)光電子器件
半導體發光、攝象器件和激光器件的發展使光電子器件成為一個重要的領域。它們的應用范圍主要是:光通信、數碼顯示、圖象接收、光集成等。
❽ 半導體的應用領域有哪些
試想過你的生活缺少了數字是什麼概念嗎?那將是一個混亂的世界,無論是你的手機號碼、你的身份證號碼、還是你家的門牌號,這些全部都是用數字表達的!電子游戲、電子郵件、數碼音樂、數碼照片、多媒體光碟、網路會議、遠程教學、網上購物、電子銀行和電子貨幣……幾乎一切的東西都可以用0和1來表示。電腦和互聯網的出現讓人們有了更大的想像和施展的空間,我們的生活就在這簡單的「0」「1」之間變得豐富起來、靈活起來、愉悅起來,音像製品、手機、攝像機、數碼相機、MP3、袖珍播放機、DVD播放機、PDA、多媒體、多功能游戲機、ISDN等新潮電子產品逐漸被人們所認識和接受,數字化被我們隨身攜帶著,從而擁有了更加多變的視聽新感受,音樂和感覺在數字化生活中靜靜流淌……
數字生活已成為信息化時代的特徵,它改變著人類生活的方方面面,在此背後,隱藏著新材料的巨大功勛,新材料是數字生活的「幕後英雄」。
計算機是數字生活中的重要設備,計算機的核心部件是中央處理器(CPU)和存儲器(RAM),它們是以大規模集成電路為基礎建造起來的,而這些集成電路都是由半導體材料做成的,Si片是第一代半導體材料,集成電路中採用的Si片必須要有大的直徑、高的晶體完整性、高的幾何精度和高的潔凈度。為了使集成電路具有高效率、低能耗、高速度的性能,相繼發展了GaAs、InP等第二代半導體單晶材料。SiC、GaN、ZnSe、金剛石等第三代寬禁帶半導體材料、SiGe/Si、SOI(Silicon On Insulator)等新型硅基材料、超晶格量子阱材料可製作高溫(300~500°C)、高頻、高功率、抗輻射以及藍綠光、紫外光的發光器件和探測器件,從而大幅度地提高原有硅集成電路的性能,是未來半導體材料的重要發展方向。
人機交換,常常需要將各種形式的信息,如文字、數據、圖形、圖像和活動圖像顯示出來。靜止信息的顯示手段最常用的如列印機、復印機、傳真機和掃描儀等,一般稱為信息的輸出和輸入設備。為提高解析度以及輸入和輸出的速度,需要發展高靈敏度和穩定的感光材料,例如激光列印機和復印機上的感光鼓材料,目前使用的是無機的硒合金和有機的酞菁染料。顯示活動圖像信息的主要部件是陰極射線管(CRT),廣泛地應用在計算機終端顯示器和平面電視上,CRT目前採用的電致發光材料,大都使用稀土摻雜(Tb3+、Sn3+、Eu3+等)和過渡元素摻雜(Mn2+)的硫化物(ZnS、CdS等)和氧化物(Y2O3、YAlO3)等無機材料。
為了減小CRT龐大的體積,信息顯示的趨勢是高解析度、大顯示容量、平板化、薄型化和大型化,為此主要採用了液晶顯示技術(LCD)、場致發射顯示技術(FED)、等離子體顯示技術(PDP)和發光二極體顯示技術(LED)等平板顯示技術,廣泛應用在高清晰度電視(HDTV)、電視電話、計算機(台式或可移動式)顯示器、汽車用及個人數字化終端顯示等應用目標上,CRT不再是一支獨秀,而是形成與各種平板顯示器百花爭艷的局面。
在液晶顯示技術中採用的液晶材料早已在手錶、計算器、筆記本電腦、攝像機中得到應用,液晶材料較早使用的是苯基環己烷類、環己基環己烷類、吡啶類等向列相和手征相材料,後來發展了鐵電型(FE)液晶,響應時間在微秒級,但鐵電液晶的穩定性差,只能用分支法(side-chain)來改進。目前趨向開發反鐵電液晶,因為它們的穩定性較高。
液晶顯示材料在大屏幕顯示中有一定的困難,目前作為大屏幕顯示的主要候選對象為等離子體顯示器(PDP)和發光二極體(LED)。PDP所用的熒光粉為摻稀土的鋇鋁氧化物。用類金剛石材料作冷陰極和稀土離子摻雜的氧化物作發光材料,推動場發射顯示(FED)的發展。製作高亮度發光二極體的半導體材料主要為發紅、橙、黃色的GaAs基和GaP基外延材料、發藍光的GaN基和ZnSe基外延材料等。
由於網際網路和多媒體技術的迅速發展,人類要處理、傳輸和存儲超高信息容量達太(兆兆)數字位(Tb,1012bits),超高速信息流每秒達太位(Tb/s),可以說人類已經進入了太位信息時代。現代的信息存儲方式多種多樣,以計算機系統存儲為例,存儲方式分為隨機內存儲、在線外存儲、離線外存儲和離線存儲。隨機內存儲器要求集成度高、數據存取速度快,因此一直以大規模集成的微電子技術為基礎的半導體動態隨機存儲器(DRAM)為主,256兆位的隨機動態存儲器的晶體管超過2億個。外存儲大都採用磁記錄方式,磁存儲介質的主要形式為磁帶、磁泡、軟磁碟和硬磁碟。磁存儲密度的提高主要依賴於磁介質材料的改進,相繼採用了磁性氧化物(如g-Fe2O3、CrO2、金屬磁粉等)、鐵氧體系、超細磁性氧化物粉末、化學電鍍鈷鎳合金或真空濺射蒸鍍Co基合金連續磁性薄膜介質等材料,磁存儲的信息存儲量從而有了很大的提高。固體(閃)存儲器(flash memory)是不揮發可擦寫的存儲器,是基於半導體二極體的集成電路,比較緊湊和堅固,可以在內存與外存間插入使用。記錄磁頭鐵芯材料一般用飽和磁感大的軟磁材料,如80Ni-20Fe、Co-Zr-Nb、Fe-Ta-C、45Ni-55Fe、Fe-Ni-N、Fe-Si、Fe-Si-Ni、67Co-10Ni-23Fe等。近年來發展起來的巨磁阻(GMR)材料,在一定的磁場下電阻急劇減小,一般減小幅度比通常磁性金屬與合金的磁電阻數值約高10餘倍。GMR一般由自由層/導電層/釘扎層/反強磁性層構成,其中自由層可為Ni-Fe、Ni-Fe/Co、Co-Fe等強磁體材料,在其兩端安置有Co-Cr-Pt等永磁體薄膜,導電層為數nm的銅薄膜,釘扎層為數nm的軟磁Co合金,磁化固定層用5~40nm的Ni-O、Ni-Mn、Mn-In、Fe-Cr-Pt、Cr-Mn-Pt、Fe-Mn等反強磁體,並加Ru/Co層的積層自由結構。採用GMR效應的讀出磁頭,將磁碟記錄密度一下子提高了近二十倍,因此巨磁阻效應的研究對發展磁存儲有著非常重要的意義。
聲視領域內激光唱片和激光唱機的興起,得益於光存儲技術的巨大發展,光碟存貯是通過調制激光束以光點的形式把信息編碼記錄在光學圓盤鍍膜介質中。與磁存儲技術相比,光碟存儲技術具有存儲容量大、存儲壽命長;非接觸式讀/寫和擦,光頭不會磨損或劃傷盤面,因此光碟系統可靠,可以自由更換;經多次讀寫載噪比(CNR)不降低。光碟存儲技術經過CD(Compact Disk)、DVD(Digital Versatile Disk)發展到將來的高密度DVD(HD-DVD)、超高密度DVD(SHD-DVD)過程中,存儲介質材料是關鍵,一次寫入的光碟材料以燒蝕型(Tc合金薄膜,Se-Tc非晶薄膜等)和相變型(Te-Ge-Sb非晶薄膜、AgInTeSb系薄膜、摻雜的ZnO薄膜、推拉型偶氮染料、亞酞菁染料)為主,可擦重寫光碟材料以磁光型(GdCo、TeFe非晶薄膜、BiMnSiAl薄膜、稀土摻雜的石榴石系YIG、Co-Pt多層薄膜)為主。光碟存儲的密度取決於激光管的波長,DVD盤使用的InGaAlP紅色激光管(波長650nm)時,直徑12cm的盤每面存儲為4.7千兆位元組(GB),而使用ZnSe(波長515nm)可達12GB,將來採用GaN激光管(波長410nm),存儲密度可達18GB。要讀寫光碟里的信息,必須採用高功率半導體激光器,所用的激光二極體採用化合物半導體GaAs、GaN等材料。
激光器除了在光碟存儲應用之外,在光通信中的作用也是眾所周知的。由於有了低閾值、低功耗、長壽命及快響應的半導體激光器,使光纖通信成為現實。光通訊就是由電信號通過半導體激光器變為光信號,而後通過光導纖維作長距離傳輸,最後再由光信號變為電信號為人接收。光纖所傳輸的光信號是由激光器發出的,常用的為半導體激光器,所用材料為GaAs、GaAlAs、GaInAsP、InGaAlP、GaSb等。在接受端所用的光探測器也為半導體材料。缺少光導纖維,光通信也只能是「紙上談兵」。低損耗的光學纖維是光纖通信的關鍵材料,目前所用的光學纖維感測材料主要有低損耗石英玻璃、氟化物玻璃和Ga2S3為基礎的硫化物玻璃和塑料光纖等,1公斤石英為主的光纖可代替成噸的銅鋁電纜。光纖通信的出現是信息傳輸的一場革命,信息容量大、重量輕、佔用空間小、抗電磁干擾、串話少、保密性強,是光纖通信的優點。光纖通信的高速發展為現代信息高速公路的建設和開通起到了至關重要的作用。
除了有線傳播外,信息的傳播還採用無線的方式。在無線傳播中最引人注目的發展是行動電話。行動電話的用戶愈多,所使用的頻率愈高,現在正向千兆周的頻率過渡,電話機的微波發射與接收亦是靠半導體晶體管來實現,其中部分Si晶體管正在被GaAs晶體管所取代。在手機中廣泛採用的高頻聲表面波SAW(Surface Acoustic Wave)及體聲波BAW(Bulk Surface Acoustic Wave)器件中的壓電材料為a-SiO2、LiNbO3、LiTaO3、Li2B4O7、KNbO3、La3Ga5SiO14等壓電晶體及ZnO/Al2O3和SiO2/ZnO/DLC/Si等高聲速薄膜材料,採用的微波介質陶瓷材料則集中在BaO-TiO2體系、BaO-Ln2O3-TiO2(Ln=La,Pr,Nd,Sm,Eu,Gd)體系、復合鈣鈦礦A(B1/3B¢2/3)O3體系(A=Ba,Sr;B=Mg,Zn,Co,Ni,Mn;B¢=Nb,Ta)和鉛基復合鈣鈦礦體系等材料上。
隨著智能化儀器儀表對高精度熱敏器件需求的日益擴大,以及手持電話、掌上電腦PDA、筆記本電腦和其它攜帶型信息及通信設備的迅速普及,進一步帶動了溫度感測器和熱敏電阻的大量需求,負溫度系數(NTC)熱敏電阻是由Co、Mn、Ni、Cu、Fe、Al等金屬氧化物混合燒結而成,其阻值隨溫度的升高呈指數型下降,阻值-溫度系數一般在百分之幾,這一卓越的靈敏度使其能夠探測極小的溫度變化。正溫度系數(PTC)熱敏電阻一般都是由BaTiO3材料添加少量的稀土元素經高溫燒結的敏感陶瓷製成的,這種材料在溫度上升到居里溫度點時,其阻值會以指數形式陡然增加,通常阻值-溫度變化率在20~40%之間。前者大量使用在鎳鎘、鎳氫及鋰電池的快速充電、液晶顯示器(LCD)圖像對比度調節、蜂窩式電話和移動通信系統中大量採用使用的溫度補償型晶體振盪器等中,來進行溫度補償,以保證器件性能穩定;此外還在計算機中的微電機、照相機鏡頭聚焦電機、列印機的列印頭、軟盤的伺服控制器和袖珍播放機的驅動器等中,發現它的身影。後者可以用於過流保護、發熱器、彩電和監視器的消磁、袖珍壓縮機電機的啟動延遲、防止筆記本電腦常效應管(FET)的熱擊穿等。
為了保證信息運行的通暢,還有許多材料在默默地作著貢獻,例如,用於製作綠色電池的材料有:鎳氫電池的正、負極材料用MH合金和Ni(OH)2材料、鋰離子電池的正、負極用LiCoO2、LiMn2O4和MCMB碳材料等電極材料;行動電話、PC機以及諸如數碼相機、MD播放機/錄音機、DVD設備和游戲機等數字音/視頻設備等中鉭電容器所用材料;現代永磁材料Fe14Nd2B在製造永磁電極、磁性軸承、耳機及微波裝置等方面有十分重要的用途;印刷電路板(PCB)及超薄高、低介電損耗的新型覆銅板(CCL)用材料;環氧模塑料、氧化鋁和氮化鋁陶瓷是半導體和集成電路晶元的封裝材料;集成電路用關鍵結構與工藝輔助材料(高純試劑、特種氣體、塑封料、引線框架材料等),不一而足,這些在浩瀚的材料世界裡星光燦爛的新材料,正在數字生活里發揮著不可或缺的作用。
隨著科技的發展,大規模集成電路將迎來深亞微米(0.1mm)硅微電子技術時代,小於0.1mm的線條就屬於納米范疇,它的線寬就已與電子的德布羅意數相近,電子在器件內部的輸運散射也將呈現量子化特性,因而器件的設計將面臨一系列來自器件工作原理和工藝技術的棘手問題,導致常說的硅微電子技術的「極限」。由於光子的速度比電子速度快得多,光的頻率比無線電的頻率高得多,為提高傳輸速度和載波密度,信息的載體由電子到光子是必然趨勢。目前已經發展了許多種激光晶體和光電子材料,如Nd:YAG、Nd:YLF、Ho:YAG、Er:YAG、Ho:Cr:Tm:YAG、Er:YAG、Ho:Cr:Tm:YLF、Ti:Al2O3、YVO4、Nd:YVO4、Ti:Al2O3、KDP、KTP、BBO、BGO、LBO、LiNbO3、K(Ta,Nb)O3、Fe:KnBO3、BaTiO3、LAP等,所有這些材料將為以光通信、光存儲、光電顯示為主的光電子技術產業作出貢獻。隨著信息材料由電子材料、微電子材料、光電子材料向光子材料發展,將會出現單電子存儲器、納米晶元、量子計算機、全光數字計算機、超導電腦、化學電腦、生物電腦和神經電腦等納米電腦,將會極大地影響著人類的數字生活。
本世紀以來,以數字化通信(Digital Communication)、數字化交換(Digital Switching)、數字化處理(Digital Processing)技術為主的數字化生活(Digital Life)正在向我們招手,一步步地向我們走來——清晨,MP3音箱播放出悅耳的晨曲,催我們按時起床;上班途中,打開隨身攜帶的筆記本電腦,進行新一天的工作安排;上班以後,通過互聯網召開網路會議、開展遠程教學和實時辦公;在下班之前,我們遠程啟動家裡的空調和濕度調節器,保證家中室溫適宜;下班途中,打開手機,悠然自在觀看精彩的影視節目;進家門前,我們接收網上訂購的貨物;回到家中,和有線電視台進行互動,觀看和下載喜歡的影視節目和歌曲,製作多媒體,也可進入社區互聯網,上網瀏覽新聞了解天氣……這一切看上去是不是很奇妙?似乎遙不可及。其實它正在和將要發生在我們身邊,隨著新一代家用電腦和互聯網的出現,如此美好數字生活將成為現實。當享受數字生活的同時,飲水思源,請不要忘記為此作出巨大貢獻的功臣——絢麗多彩的新材料世界!
❾ 半導體考研有什麼方向
微電子方向吧 應該 你考340 350左右 是要看年份的,不能一概而論,像10年工科 A區275 今年A區位300,要看的不是分時排名
❿ 半導體有哪些
半導體( semiconctor),指常溫下導電性能介於導體(conctor)與絕緣體(insulator)之間的材料。半導體在收音機、電視機以及測溫上有著廣泛的應用。
如二極體就是採用半導體製作的器件。半導體是指一種導電性可受控制,范圍可從絕緣體至導體之間的材料。無論從科技或是經濟發展的角度來看,半導體的重要性都是非常巨大的。
今日大部分的電子產品,如計算機、行動電話或是數字錄音機當中的核心單元都和半導體有著極為密切的關連。常見的半導體材料有硅、鍺、砷化鎵等,而硅更是各種半導體材料中,在商業應用上最具有影響力的一種。
分類:
半導體材料很多,按化學成分可分為元素半導體和化合物半導體兩大類。
鍺和硅是最常用的元素半導體;化合物半導體包括第Ⅲ和第Ⅴ族化合物(砷化鎵、磷化鎵等)、第Ⅱ和第Ⅵ族化合物( 硫化鎘、硫化鋅等)、氧化物(錳、鉻、鐵、銅的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物組成的固溶體(鎵鋁砷、鎵砷磷等)。
除上述晶態半導體外,還有非晶態的玻璃半導體、有機半導體等。
半導體的分類,按照其製造技術可以分為:集成電路器件,分立器件、光電半導體、邏輯IC、模擬IC、儲存器等大類,一般來說這些還會被分成小類。
此外還有以應用領域、設計方法等進行分類,雖然不常用,但還是按照IC、LSI、VLSI(超大LSI)及其規模進行分類的方法。此外,還有按照其所處理的信號,可以分成模擬、數字、模擬數字混成及功能進行分類的方法。
(10)半導體方向包括哪些擴展閱讀:
發展歷史:
半導體的發現實際上可以追溯到很久以前。
1833年,英國科學家電子學之父法拉第最先發現硫化銀的電阻隨著溫度的變化情況不同於一般金屬,一般情況下,金屬的電阻隨溫度升高而增加,但巴拉迪發現硫化銀材料的電阻是隨著溫度的上升而降低。這是半導體現象的首次發現。
不久,1839年法國的貝克萊爾發現半導體和電解質接觸形成的結,在光照下會產生一個電壓,這就是後來人們熟知的光生伏特效應,這是被發現的半導體的第二個特徵。
1873年,英國的史密斯發現硒晶體材料在光照下電導增加的光電導效應,這是半導體又一個特有的性質。
半導體的這四個效應,(jianxia霍爾效應的余績──四個伴生效應的發現)雖在1880年以前就先後被發現了,但半導體這個名詞大概到1911年才被考尼白格和維斯首次使用。而總結出半導體的這四個特性一直到1947年12月才由貝爾實驗室完成。
在1874年,德國的布勞恩觀察到某些硫化物的電導與所加電場的方向有關,即它的導電有方向性,在它兩端加一個正向電壓,它是導通的;如果把電壓極性反過來,它就不導電,這就是半導體的整流效應,也是半導體所特有的第三種特性。同年,舒斯特又發現了銅與氧化銅的整流效應。
很多人會疑問,為什麼半導體被認可需要這么多年呢?主要原因是當時的材料不純。沒有好的材料,很多與材料相關的問題就難以說清楚。
參考資料:
網路-半導體