當前位置:首頁 » 半導體業 » 硅什麼是半導體

硅什麼是半導體

發布時間: 2021-03-06 22:29:24

㈠ 硅可用作半導體材料

A.硅位於金屬和非金屬元素之間,具有金屬和非金屬的性質,硅單質是半導體的主版要材料,故A正確;權 B.SO 2 具有漂白性,可用於漂白紙漿,故B正確; C.稀硫酸有弱氧化性,能和鋁反應生成氫氣,不能用鋁製品容器盛放,故C錯誤; D.Na 2 O 2 能與CO 2 反應2Na 2 O 2 +2CO 2 ═2Na 2 CO 3 +O 2 ,生成氧氣,可作為呼吸面具或潛水艇中的氧氣的來源,Na 2 O 2 為固體時容易攜帶、反應容易,故D正確; 故選C.

㈡ 金屬硅為什麼是半導體...


這與硅本身的原子結構等物理特性有關。一般來說,常溫下導電能力很內強的物體稱為導體,導電能力很容弱的物體稱為絕緣體,導電能力介於導體與絕緣體之間的稱為半導體,硅、鍺、砷化鎵等物體的導電能力介於導體與絕緣體之間,故稱為半導體。(並不像一樓說的硅長得像金屬又不是金屬所以叫半導體。。囧。。,石墨不是金屬但導電能力很強所以也是導體。。)
在半導體中摻入適量雜質(如硼、磷等),可大大提高半導體的導電能力,稱為摻雜半導體(不摻入任何雜質的半導體稱為本徵半導體),現在所用的電子元件中絕大多數(甚至全部)都是摻雜半導體。

㈢ 從微觀角度來說硅為什麼可以作半導體材料

因為晶體硅具有一個非常重要的特性——單方向導電,也就是說,電流只能從一端流向另一端,製作半導體器件的原材料就需要具有有這種特有的特性材料。

多角度解釋:
(1)熱敏性 半導體材料的電阻率與溫度有密切的關系.溫度升高,半導體的電阻率會明顯變小.例如純鍺(Ge),溫度每升高10度,其電阻率就會減少到原來的一半.
(2)光電特性 很多半導體材料對光十分敏感,無光照時,不易導電;受到光照時,就變的容易導電了.例如,常用的硫化鎘半導體光敏電阻,在無光照時電阻高達幾十兆歐,受到光照時電阻會減小到幾十千歐.半導體受光照後電阻明顯變小的現象稱為「光導電」.利用光導電特性製作的光電器件還有光電二極體和光電三極體等.
近年來廣泛使用著一種半導體發光器件--發光二極體,它通過電流時能夠發光,把電能直接轉成光能.目前已製作出發黃,綠,紅,藍幾色的發光二極體,以及發出不可見光紅外線的發光二極體.
另一種常見的光電轉換器件是硅光電池,它可以把光能直接轉換成電能,是一種方便的而清潔的能源.
(3)攙雜特性 純凈的半導體材料電阻率很高,但摻入極微量的「雜質」元素後,其導電能力會發生極為顯著的變化.例如,純硅的電阻率為214×1000歐姆/厘米,若摻入百萬分之一的硼元素,電阻率就會減小到0.4歐姆/厘米.因此,人們可以給半導體摻入微量的某種特定的雜質元素,精確控制它的導電能力,用以製作各種各樣的半導體器件
半導體的導電性能比導體差而比絕緣體強.實際上,半導體與導體、絕緣體的區別在不僅在於導電能力的不同,更重要的是半導體具有獨特的性能(特性).
1. 在純凈的半導體中適當地摻入一定種類的極微量的雜質,半導體的導電性能就會成百萬倍的增加—-這是半導體最顯著、最突出的特性.例如,晶體管就是利用這種特性製成的.
2. 當環境溫度升高一些時,半導體的導電能力就顯著地增加;當環境溫度下降一些時,半導體的導電能力就顯著地下降.這種特性稱為「熱敏」,熱敏電阻就是利用半導體的這種特性製成的.
3. 當有光線照射在某些半導體時,這些半導體就像導體一樣,導電能力很強;當沒有光線照射時,這些半導體就像絕緣體一樣不導電,這種特性稱為「光敏」.例如,用作自動化控制用的「光電二極體」、「光電三極體」和光敏電阻等,就是利用半導體的光敏特性製成的.
由此可見,溫度和光照對晶體管的影響很大.因此,晶體管不能放在高溫和強烈的光照環境中.在晶體管表面塗上一層黑漆也是為了防止光照對它的影響.最後,明確一個基本概驗:所謂半導體材料,是一種晶體結構的材料,故「半導體」又叫「晶體」.
P性半導體和N型半導體----前面講過,在純凈的半導體中加入一定類型的微量雜質,能使半導體的導電能力成百萬倍的增加.加入了雜質的半導體可以分為兩種類型:一種雜質加到半導體中去後,在半導體中會產生大量的帶負電荷的自由電子,這種半導體叫做「N型半導體」(也叫「電子型半導體」);另一種雜質加到半導體中後,會產生大量帶正電荷的「空穴」,這種半導體叫「P型半導體」(也叫「空穴型半導體」).例如,在純凈的半導體鍺中,加入微量的雜質銻,就能形成N型半導體.同樣,如果在純凈的鍺中,加入微量的雜質銦,就形成P型半導體.
一個PN結構成晶體二極體----設法把P型半導體(有大量的帶正電荷的空穴)和N型半導體(有大量的帶負電荷的自由電子)結合在一起,見圖1所示.
圖1
在P型半導體的N型半導體相結合的地方,就會形成一個特殊的薄層,這個特殊的薄層就叫「PN結」.晶體二極體實際上就是由一個PN結構成的(見圖1).
例如,收音機中應用的晶體二極體,其觸絲(即觸針)部分相當於P型半導體,N型鍺片就是N型半導體,他們之間的接觸面就是PN結.P端(或P端引出線)叫晶體二極體的正端(也稱正極).N端(或N端引出線)叫晶體二極體的負端(也稱負極).
如果像圖2那樣,把正端連接電池的正極,把負端接電池的負極,這是PN結的電阻值就小到只有幾百歐姆了.因此,通過PN結的電流(I=U/R)就很大.這樣的連接方法(圖2a)叫「正向連接」.正向連接時,晶體管二極體(或PN結)兩端承受的電壓叫「正向電壓」;處在正向電壓下,二極體(或PN結)的電阻叫「正向電阻」,在正向電壓下,通過二極體(或PN結)的電流叫「正向電流」.很明顯,因為晶體二極體的正向電阻很小(幾百歐姆),在一定正向電壓下,正向電流(I=U/R)就會很大----這表明在正向電壓下,二極體(或PN結)具有像導體一樣的導電本領.
圖2a 圖2b
反過來,如果把P端接到電池的負極,N端接到電池的正極(見圖2b).這時PN結的電阻很大(大到幾百千毆),電流(I=U/R)幾乎不能通過二極體,或者說通過的電流很微弱.這樣的連接方法叫「反向連接」.反向連接時,晶體管二極體(或PN結)兩端承受的電壓叫「反向電壓」;處在反向電壓下,二極體(或PN結)的電阻叫「反向電阻」,在反向電壓下,通過二極體(或PN結)的電流叫「反向電流」.顯然,因為晶體二極體的正向電阻很大(幾百千歐姆),在一定的反向電壓下,正向電流(I=U/R)就會很小,甚至可以忽略不計,----這表明在一定的反向電壓下,二極體(或PN結)幾乎不導電.
上敘實驗說明這樣一個結論:晶體二極體(或PN結)具有單向導電特性.
晶體二極體用字母「D」代表,在電路中常用圖3的符號表示,即表示電流(正電荷)只能順著箭頭方向流動,而不能逆著箭頭方向流動.圖3是常用的晶體二極體的外形及符號.
圖3
利用二極體的單向導電性可以用來整流(將交流電變成直流電)和檢波(從高頻或中頻電信號取出音頻信號)以及變頻(如把高頻變成固定的中頻465千周)等.
PN結的極間電容----PN結的P型和N型兩快半導體之間構成一個電容量很小的電容,叫做「極間電容」(如圖4所示).由於電容抗隨頻率的增高而減小.所以,PN結工作於高頻時,高頻信號容易被極間電容或反饋而影響PN結的工作.但在直流或低頻下工作時,極間電容對直流和低頻的阻抗很大,故一般不會影響PN結的工作性能.PN結的面積越大,極間電容量越大,影響也約大,這就是面接觸型二極體(如整流二極體)和低頻三極體不能用於高頻工作的原因

㈣ 為什麼晶元要用硅作為半導體材料,而不用其他的

理論上所有半導體都可以作為晶元材料,但是硅的性質穩定、容易提純、儲存量巨大等等性質,是所有半導體材料中,最適合做晶元的。

在晶體管(二極體、三極體等等)未發明之前,初期電子計算機使用的是電子管,但是電子管體積巨大、功耗高、壽命短;人類第一台電子計算機使用18000個電子管,重30噸,佔地150平方米,耗電功率高達150千瓦,但是其運算能力遠遠趕不上如今的一台掌上計算機。


其中硅因為擁有眾多優良特性,使得硅成為晶元的主要材料:

(1)硅元素的含量巨大,地球元素中僅次於氧元素(地球元素含量排行:氧>硅>鋁>鐵>鈣>鈉>鉀……)。

(2)硅元素提純技術成熟,製作成本低,最初晶體管使用鍺作為晶元材料,是因為當初硅元素的提純技術不成熟,如今硅的提純可以達到99.999999999%。

(3)硅元素的性質穩定,包括化學性質和物質性質,比如鍺做成晶體管,當溫度達到75℃以上時,其導電率有較大變化,而且做成PN結後鍺的反向漏電流比硅大,這對晶元的穩定性非常不利。

(4)硅本身是無毒無害的物質,我們常見的很多石頭都含有二氧化硅(SiO2)。

㈤ 為什麼硅是半導體

1。硅是不導電的,所以不是導體!
2。硅在有意識的參雜後可以導電,硅的色澤等方面類似於金屬;是一種類似金屬而又不是金屬的物體!
硅叫半導體材料,硅形成二極體,三極體等才叫半導體!

㈥ 硅與半導體

硅以大量的硅酸鹽礦和石英礦存在於自然界中。如果說碳是組成生物界的主要元素,那麼,硅就是構成地球上礦物界的主要元素。
硅在地殼中的豐度為27.7%,在所有的元素中居第二位,地殼中含量最多的元素氧和硅結合形成的二氧化硅SiO2,佔地殼總質量的87%。
我們腳下的泥土、石頭和沙子,我們使用的磚、瓦、水泥、玻璃和陶瓷等等,這些我們在日常生活中經常遇到的物質,都是硅的化合物。硅,真是遍布世界,俯拾即是的元素。
單晶硅和多晶硅的區別是,當熔融的單質硅凝固時,硅原子以金剛石晶格排列成許多晶核,如果這些晶核長成晶面取向相同的晶粒,則形成單晶硅。如果這些晶核長成晶面取向不同的晶粒,則形成多晶硅。
硅有晶態和無定形兩種同素異形體。晶態硅又分為單晶硅和多晶硅,它們均具有金剛石晶格,晶體硬而脆,具有金屬光澤,能導電,但導電率不及金屬,且隨溫度升高而增加,具有半導體性質。晶態硅的熔點1410C,沸點2355C,密無定形硅是一種黑灰色的粉末。
硅的化學性質

硅在常溫下不活潑,其主要的化學性質如下:

(1)與非金屬作用
常溫下Si只能與F2反應,在F2中瞬間燃燒,生成SiF4.

Si+F2 === Si+F4

加熱時,能與其它鹵素反應生成鹵化硅,與氧反應生成SiO2:

Si+2F2 SiF4 (X=Cl,Br,I)

Si+O2 SiO2 (SiO2的微觀結構)

在高溫下,硅與碳、氮、硫等非金屬單質化合,分別生成碳化硅SiC、氮化硅Si3N4和硫化硅SiS2等.

Si+C SiC
3Si+2N2 Si3N4
Si+2S SiS2

(2)與酸作用
Si在含氧酸中被鈍化,但與氫氟酸及其混合酸反應,生成SiF4或H2SiF6:

Si+4HF SiF4↑+2H2↑
3Si+4HNO3+18HF === 3H2SiF6+4NO↑+8H2O

(3)與鹼作用
無定形硅能與鹼猛烈反應生成可溶性硅酸鹽,並放出氫氣:

Si+2NaOH+H2O === Na2SiO3+2H2↑

(4)與金屬作用
硅還能與鈣、鎂、銅、鐵、鉑、鉍等化合,生成相應的金屬硅化物。
硅的用途

①高純的單晶硅是重要的半導體材料。在單晶硅中摻入微量的第IIIA族元素,形成p型硅半導體;摻入微量的第VA族元素,形成n型和p型半導體結合在一起,就可做成太陽能電池,將輻射能轉變為電能。在開發能源方面是一種很有前途的材料。

②金屬陶瓷、宇宙航行的重要材料。將陶瓷和金屬混合燒結,製成金屬陶瓷復合材料,它耐高溫,富韌性,可以切割,既繼承了金屬和陶瓷的各自的優點,又彌補了兩者的先天缺陷。 可應用於軍事武器的製造

第一架太空梭「哥倫比亞號」能抵擋住高速穿行稠密大氣時磨擦產生的高溫,全靠它那三萬一千塊硅瓦拼砌成的外殼。

③光導纖維通信,最新的現代通信手段。用純二氧化硅拉制出高透明度的玻璃纖維,激光在玻璃纖維的通路里,無數次的全反射向前傳輸,代替了笨重的電纜。光纖通信容量高,一根頭發絲那麼細的玻璃纖維,可以同時傳輸256路電話,它還不受電、磁干擾,不怕竊聽,具有高度的保密性。光纖通信將會使 21世紀人類的生活發生革命性巨變。

聚氧硅材料的應用1
④性能優異的硅有機化合物。例如有機硅塑料是極好的防水塗布材料。在地下鐵道四壁噴塗有機硅,可以一勞永逸地解決滲水問題。在古文物、雕塑的外表,塗一層薄薄的有機硅塑料,可以防止青苔滋生,抵擋風吹雨淋和風化。天安門廣場上的人民英雄紀念碑,便是經過有機硅塑料處理表面的,因此永遠潔白、清新。
硅橡膠具有良好的絕緣改組,長期不龜裂、不老化,沒有毒性,還可以作為醫用高分子材料。
硅油,是一種很好的潤滑劑,由於它的粘度受溫度變化的影響小,流動性好,蒸氣壓低,在高溫或寒冷的環境中都能使用。硅元素進入有機世界,將它優異的無機性質揉進有機物里,使有機硅化合物別具一格,開辟了新的領域。硅以大量的硅酸鹽礦和石英礦存在於自然界中。如果說碳是組成生物界的主要元素,那麼,硅就是構成地球上礦物界的主要元素。
硅在地殼中的豐度為27.7%,在所有的元素中居第二位,地殼中含量最多的元素氧和硅結合形成的二氧化硅SiO2,佔地殼總質量的87%。
我們腳下的泥土、石頭和沙子,我們使用的磚、瓦、水泥、玻璃和陶瓷等等,這些我們在日常生活中經常遇到的物質,都是硅的化合物。硅,真是遍布世界,俯拾即是的元素。
單晶硅和多晶硅的區別是,當熔融的單質硅凝固時,硅原子以金剛石晶格排列成許多晶核,如果這些晶核長成晶面取向相同的晶粒,則形成單晶硅。如果這些晶核長成晶面取向不同的晶粒,則形成多晶硅。
硅有晶態和無定形兩種同素異形體。晶態硅又分為單晶硅和多晶硅,它們均具有金剛石晶格,晶體硬而脆,具有金屬光澤,能導電,但導電率不及金屬,且隨溫度升高而增加,具有半導體性質。晶態硅的熔點1410C,沸點2355C,密無定形硅是一種黑灰色的粉末。
硅的化學性質

硅在常溫下不活潑,其主要的化學性質如下:

(1)與非金屬作用
常溫下Si只能與F2反應,在F2中瞬間燃燒,生成SiF4.

Si+F2 === Si+F4

加熱時,能與其它鹵素反應生成鹵化硅,與氧反應生成SiO2:

Si+2F2 SiF4 (X=Cl,Br,I)

Si+O2 SiO2 (SiO2的微觀結構)

在高溫下,硅與碳、氮、硫等非金屬單質化合,分別生成碳化硅SiC、氮化硅Si3N4和硫化硅SiS2等.

Si+C SiC
3Si+2N2 Si3N4
Si+2S SiS2

(2)與酸作用
Si在含氧酸中被鈍化,但與氫氟酸及其混合酸反應,生成SiF4或H2SiF6:

Si+4HF SiF4↑+2H2↑
3Si+4HNO3+18HF === 3H2SiF6+4NO↑+8H2O

(3)與鹼作用
無定形硅能與鹼猛烈反應生成可溶性硅酸鹽,並放出氫氣:

Si+2NaOH+H2O === Na2SiO3+2H2↑

(4)與金屬作用
硅還能與鈣、鎂、銅、鐵、鉑、鉍等化合,生成相應的金屬硅化物。
硅的用途

①高純的單晶硅是重要的半導體材料。在單晶硅中摻入微量的第IIIA族元素,形成p型硅半導體;摻入微量的第VA族元素,形成n型和p型半導體結合在一起,就可做成太陽能電池,將輻射能轉變為電能。在開發能源方面是一種很有前途的材料。

②金屬陶瓷、宇宙航行的重要材料。將陶瓷和金屬混合燒結,製成金屬陶瓷復合材料,它耐高溫,富韌性,可以切割,既繼承了金屬和陶瓷的各自的優點,又彌補了兩者的先天缺陷。 可應用於軍事武器的製造

第一架太空梭「哥倫比亞號」能抵擋住高速穿行稠密大氣時磨擦產生的高溫,全靠它那三萬一千塊硅瓦拼砌成的外殼。

③光導纖維通信,最新的現代通信手段。用純二氧化硅拉制出高透明度的玻璃纖維,激光在玻璃纖維的通路里,無數次的全反射向前傳輸,代替了笨重的電纜。光纖通信容量高,一根頭發絲那麼細的玻璃纖維,可以同時傳輸256路電話,它還不受電、磁干擾,不怕竊聽,具有高度的保密性。光纖通信將會使 21世紀人類的生活發生革命性巨變。

聚氧硅材料的應用1
④性能優異的硅有機化合物。例如有機硅塑料是極好的防水塗布材料。在地下鐵道四壁噴塗有機硅,可以一勞永逸地解決滲水問題。在古文物、雕塑的外表,塗一層薄薄的有機硅塑料,可以防止青苔滋生,抵擋風吹雨淋和風化。天安門廣場上的人民英雄紀念碑,便是經過有機硅塑料處理表面的,因此永遠潔白、清新。
硅橡膠具有良好的絕緣改組,長期不龜裂、不老化,沒有毒性,還可以作為醫用高分子材料。
硅油,是一種很好的潤滑劑,由於它的粘度受溫度變化的影響小,流動性好,蒸氣壓低,在高溫或寒冷的環境中都能使用。硅元素進入有機世界,將它優異的無機性質揉進有機物里,使有機硅化合物別具一格,開辟了新的領域。

㈦ 什麼是硅(Si)半導體集成電路

就是利用光刻,實現在一小塊硅上面完成幾個幾十個甚至億萬個二極體三極體等等。它主要用在弱點方面,在強電上和大功率大電流上,還是需要獨立大功率的元器件支持,例如大功率電容,大電流的三極體和電阻,等等。

㈧ 硅半導體,什麼是硅半導體

半導體硅

質量符合半導體器件要求的硅材料。包括多晶硅、單晶硅、硅晶片(包括切片、磨片、拋光片)、外延片、非晶硅薄膜、微晶硅薄膜等。

㈨ 自然界的硅是半導體嘛

作為半導體材料使來用自的是「單晶硅」,即在熔融狀態下的單質硅以相同方向結晶形成具有各向異性的晶體,如果結晶微粒方向不規則排列,則成為多晶硅;多晶硅與單晶硅在很多物理性質上都有大差異。自然界中,單質硅並不存在,實際上,作為生產單晶硅的單質硅材料,需經人工提純,其純度達到6個9,甚至9個9以上,幾乎是最純凈的單質。望採納答案。

㈩ 什麼是半導體

半導體( semiconctor),指常溫下導電性能介於導體(conctor)與絕緣體(insulator)之間的材料。半導體在收音機、電視機以及測溫上有著廣泛的應用。

如二極體就是採用半導體製作的器件。半導體是指一種導電性可受控制,范圍可從絕緣體至導體之間的材料。無論從科技或是經濟發展的角度來看,半導體的重要性都是非常巨大的。

今日大部分的電子產品,如計算機、行動電話或是數字錄音機當中的核心單元都和半導體有著極為密切的關連。常見的半導體材料有硅、鍺、砷化鎵等,而硅更是各種半導體材料中,在商業應用上最具有影響力的一種。

分類:

半導體材料很多,按化學成分可分為元素半導體和化合物半導體兩大類。

鍺和硅是最常用的元素半導體;化合物半導體包括第Ⅲ和第Ⅴ族化合物(砷化鎵、磷化鎵等)、第Ⅱ和第Ⅵ族化合物( 硫化鎘、硫化鋅等)、氧化物(錳、鉻、鐵、銅的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物組成的固溶體(鎵鋁砷、鎵砷磷等)。

除上述晶態半導體外,還有非晶態的玻璃半導體、有機半導體等。

半導體的分類,按照其製造技術可以分為:集成電路器件,分立器件、光電半導體、邏輯IC、模擬IC、儲存器等大類,一般來說這些還會被分成小類。

此外還有以應用領域、設計方法等進行分類,雖然不常用,但還是按照IC、LSI、VLSI(超大LSI)及其規模進行分類的方法。此外,還有按照其所處理的信號,可以分成模擬、數字、模擬數字混成及功能進行分類的方法。

(10)硅什麼是半導體擴展閱讀:

發展歷史:

半導體的發現實際上可以追溯到很久以前。

1833年,英國科學家電子學之父法拉第最先發現硫化銀的電阻隨著溫度的變化情況不同於一般金屬,一般情況下,金屬的電阻隨溫度升高而增加,但巴拉迪發現硫化銀材料的電阻是隨著溫度的上升而降低。這是半導體現象的首次發現。

不久,1839年法國的貝克萊爾發現半導體和電解質接觸形成的結,在光照下會產生一個電壓,這就是後來人們熟知的光生伏特效應,這是被發現的半導體的第二個特徵。

1873年,英國的史密斯發現硒晶體材料在光照下電導增加的光電導效應,這是半導體又一個特有的性質。

半導體的這四個效應,(jianxia霍爾效應的余績──四個伴生效應的發現)雖在1880年以前就先後被發現了,但半導體這個名詞大概到1911年才被考尼白格和維斯首次使用。而總結出半導體的這四個特性一直到1947年12月才由貝爾實驗室完成。

在1874年,德國的布勞恩觀察到某些硫化物的電導與所加電場的方向有關,即它的導電有方向性,在它兩端加一個正向電壓,它是導通的;如果把電壓極性反過來,它就不導電,這就是半導體的整流效應,也是半導體所特有的第三種特性。同年,舒斯特又發現了銅與氧化銅的整流效應。

很多人會疑問,為什麼半導體被認可需要這么多年呢?主要原因是當時的材料不純。沒有好的材料,很多與材料相關的問題就難以說清楚。

參考資料:

網路-半導體

熱點內容
三個字的電影名 發布:2024-08-19 09:10:03 瀏覽:417
台灣紅羊經典電影 發布:2024-08-19 09:02:17 瀏覽:767
搞笑電影范冰冰梁家輝開戰 發布:2024-08-19 08:53:18 瀏覽:917
免費午夜激情 發布:2024-08-19 08:42:15 瀏覽:831
40分鍾左右的英語電影 發布:2024-08-19 08:28:43 瀏覽:695
電影宋基美娜 發布:2024-08-19 08:27:04 瀏覽:942
宿舍都變成女的的電影 發布:2024-08-19 07:59:35 瀏覽:897
台灣恐怖片喪屍 發布:2024-08-19 07:57:21 瀏覽:179
免費觀看qq群 發布:2024-08-19 07:53:00 瀏覽:921
4級片名字 發布:2024-08-19 07:39:14 瀏覽:553