半導體用什麼材料
❶ 什麼是半導體
半導體( semiconctor),指常溫下導電性能介於導體(conctor)與絕緣體(insulator)之間的材料。半導體在收音機、電視機以及測溫上有著廣泛的應用。
如二極體就是採用半導體製作的器件。半導體是指一種導電性可受控制,范圍可從絕緣體至導體之間的材料。無論從科技或是經濟發展的角度來看,半導體的重要性都是非常巨大的。
今日大部分的電子產品,如計算機、行動電話或是數字錄音機當中的核心單元都和半導體有著極為密切的關連。常見的半導體材料有硅、鍺、砷化鎵等,而硅更是各種半導體材料中,在商業應用上最具有影響力的一種。
分類:
半導體材料很多,按化學成分可分為元素半導體和化合物半導體兩大類。
鍺和硅是最常用的元素半導體;化合物半導體包括第Ⅲ和第Ⅴ族化合物(砷化鎵、磷化鎵等)、第Ⅱ和第Ⅵ族化合物( 硫化鎘、硫化鋅等)、氧化物(錳、鉻、鐵、銅的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物組成的固溶體(鎵鋁砷、鎵砷磷等)。
除上述晶態半導體外,還有非晶態的玻璃半導體、有機半導體等。
半導體的分類,按照其製造技術可以分為:集成電路器件,分立器件、光電半導體、邏輯IC、模擬IC、儲存器等大類,一般來說這些還會被分成小類。
此外還有以應用領域、設計方法等進行分類,雖然不常用,但還是按照IC、LSI、VLSI(超大LSI)及其規模進行分類的方法。此外,還有按照其所處理的信號,可以分成模擬、數字、模擬數字混成及功能進行分類的方法。
(1)半導體用什麼材料擴展閱讀:
發展歷史:
半導體的發現實際上可以追溯到很久以前。
1833年,英國科學家電子學之父法拉第最先發現硫化銀的電阻隨著溫度的變化情況不同於一般金屬,一般情況下,金屬的電阻隨溫度升高而增加,但巴拉迪發現硫化銀材料的電阻是隨著溫度的上升而降低。這是半導體現象的首次發現。
不久,1839年法國的貝克萊爾發現半導體和電解質接觸形成的結,在光照下會產生一個電壓,這就是後來人們熟知的光生伏特效應,這是被發現的半導體的第二個特徵。
1873年,英國的史密斯發現硒晶體材料在光照下電導增加的光電導效應,這是半導體又一個特有的性質。
半導體的這四個效應,(jianxia霍爾效應的余績──四個伴生效應的發現)雖在1880年以前就先後被發現了,但半導體這個名詞大概到1911年才被考尼白格和維斯首次使用。而總結出半導體的這四個特性一直到1947年12月才由貝爾實驗室完成。
在1874年,德國的布勞恩觀察到某些硫化物的電導與所加電場的方向有關,即它的導電有方向性,在它兩端加一個正向電壓,它是導通的;如果把電壓極性反過來,它就不導電,這就是半導體的整流效應,也是半導體所特有的第三種特性。同年,舒斯特又發現了銅與氧化銅的整流效應。
很多人會疑問,為什麼半導體被認可需要這么多年呢?主要原因是當時的材料不純。沒有好的材料,很多與材料相關的問題就難以說清楚。
參考資料:
網路-半導體
❷ 半導體由什麼材料製成
導電性能介於導體與絕緣體之間材料,我們稱之為半導體。在電子器件中,常內用的半導體材料有:元素半導體,容如硅(Si)、鍺(Ge)等;化合物半導體,如砷化鎵(GaAs)等;以及摻雜或製成其它化合物半導體材料,如硼(B)、磷(P)、錮(In)和銻(Sb)等。其中硅是最常用的一種半導體材料。
❸ 誰知道半導體什麼材料最好
當今半導體材料並沒有完美的,常見的硅是最成熟產量最大也是可以成規模生產的專,但材料本身決定了它的屬一些性能的極限。像碳化硅主要可以工作在惡劣條件下,砷化家氮化家可以做一些高頻,高亞大功率器件,磷化銦可以做超高頻的器件,最新的還有石墨烯等等。但後幾種大部分還在研發階段,即便一些已經得到應用也是范圍很小,像航空航天,還有手機基站用的是砷化嫁。所以沒有最好的,只有適合的
❹ 什麼是半導體 為什麼晶元要用半導體做
我想你是要問晶元應用了半導體的什麼性質了吧,由於半導體可以進行不同版摻雜性形成pn結,使其具有權整流特性實現電路的與或非門,即邏輯表達。
對於集成電路來講,最底下的一層叫襯底(一般為P型半導體),是參與集成電路工作的。拿cmos工藝來講,N溝道mos的p型襯底都是連在一起的,都是同一個襯底。(一般的電路中的絕緣體,只是一個載體,它起到支撐和絕緣的作用。)
再形象一點,就是,集成電路是一些電子元器件加連線構成,沒有絕緣體充當絕緣和支撐。它通過加反偏和其他的技術來實現隔離(如器件二極體、三極體、場效應管)。
理解有限,希望你能滿意。
❺ 目前半導體應用最廣泛的材料是什麼
「半導體:常溫下導電復性能介於導體(conctor)與絕制緣體(insulator)之間的材料。 主要材料: 元素半導體:鍺和硅是最常用的元素半導體; 化合物半導體:包括第Ⅲ和第Ⅴ族化合物(砷化鎵、磷化鎵等)、第Ⅱ和第Ⅵ族化合物( 硫化鎘、硫化鋅等)、氧化物(錳、鉻、鐵、銅的氧化物)...」
❻ 半導體的主要材料是什麼
半導體:常溫下導電性能介於導體(conctor)與絕緣體(insulator)之間的材料專。
主要材料:
元素半屬導體:鍺和硅是最常用的元素半導體;
化合物半導體:包括第Ⅲ和第Ⅴ族化合物(砷化鎵、磷化鎵等)、第Ⅱ和第Ⅵ族化合物( 硫化鎘、硫化鋅等)、氧化物(錳、鉻、鐵、銅的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物組成的固溶體(鎵鋁砷、鎵砷磷等)。
技術科研領域:
(1)集成電路
它是半導體技術發展中最活躍的一個領域,已發展到大規模集成的階段。在幾平方毫米的矽片上能製作幾萬只晶體管,可在一片矽片上製成一台微信息處理器,或完成其它較復雜的電路功能。集成電路的發展方向是實現更高的集成度和微功耗,並使信息處理速度達到微微秒級。
(2)微波器件
半導體微波器件包括接收、控制和發射器件等。毫米波段以下的接收器件已廣泛使用。在厘米波段,發射器件的功率已達到數瓦,人們正在通過研製新器件、發展新技術來獲得更大的輸出功率。
(3)光電子器件
半導體發光、攝象器件和激光器件的發展使光電子器件成為一個重要的領域。它們的應用范圍主要是:光通信、數碼顯示、圖象接收、光集成等。
❼ 半導體材料有哪些
在可預見的將來,單晶硅仍是電子工業的首選材料,但砷化鎵這位半導體家族新秀已迅速成長為僅次於硅的重要半導體電子材料。砷化鎵在當代光電子產業中發揮著重要的作用,其產品的50%應用在軍事、航天方面,30%用於通信方面,其餘的用於計算機和測試儀器。
砷化鎵材料的特殊結構使其具備吸引人的優良特性。根據量子力學原理,電子的有效質量越小,它的運動速度就越快,而砷化鎵中電子的有效質量是自由電子質量的1/15,只有硅電子的1/3。用砷化鎵製成的晶體管的開關速度,比硅晶體管快1~4倍,用這樣的晶體管可以製造出速度更快、功能更強的計算機。因為砷化鎵的電子運動速度很高,用它可以制備工作頻率高達1010赫茲的微波器件,在衛星數據傳輸、通信、軍用電子等方面具有關鍵性作用。實際上,以砷化鎵為代表的Ⅲ—Ⅳ族半導體,其最大特點是其光電特性,即在光照或外加電場的情況下,電子激發釋放出光能。它的光發射效率比其他半導體材料高,用它不僅可以製作發光二極體、光探測器,還能製作半導體激光器,廣泛應用於光通信、光計算機和空間技術,開發前景令人鼓舞。
與任何半導體材料一樣,砷化鎵材料對於雜質元素十分敏感,必須精細純化。和硅、鍺等元素半導體不同的是它還要確保准確的化學配比,否則將影響材料的電學性質。
基於以上原因,砷化鎵單晶的制備工藝復雜,成本高昂。我國曾在人造衛星上利用微重力條件進行砷化鎵單晶的生長,取得了成功。此外,薄膜外延生長技術,可以精確控制單晶薄膜的厚度和電阻率,在制備半導體材料和器件中越來越受到重視。
短短十幾年,僅美國研究和開發的砷化鎵產品已逾千種。根據90年代末國際砷化鎵集成電路會議的預測,砷化鎵集成電路的市場銷售額將每年翻一番,形成數十億美元的規模。砷化鎵及其代表的Ⅲ—Ⅳ族化合物半導體家族均身懷絕技,有待於進一步開發。