半導體中Nc的數目是什麼
❶ 半導體物理中Nv和Nc分別代表什麼
Nv和Nc分別代表空穴和電子的有效能級密度。
❷ 某新型半導體的Nc=10^19每立方厘米,Nv=5×10^18,Eg=2eV,若摻入10^17的施主雜質(完全電離),計算627℃
表示考完就忘記怎麼解了
❸ 兩個半導體n型,一個是雜志補償的,另一個無雜質補償,他們的nc nv 一樣,請問哪個遷移率高
同一溫度下同種半導體遷移率受材料內缺陷散射影響
雜質濃度高 遷移率就低
載流子濃度一樣時 雜質補償的雜質濃度高 遷移率低
❹ 怎麼判斷簡並半導體什麼是簡並半導體
一般情況下,ND<NC或NA <NV;費米能級處於禁帶之中。當ND≥或NA≥NV時,EF將與EC或EV重合,或進入導帶或價帶,此時的半導體稱為簡並半導體。也即,簡並半導體是指:費米能級位於導帶之中或與導帶重合;費米能級位於價帶之中或與價帶重合。
選取EF = EC為簡並化條件,得到簡並時最小施主雜質濃度:
(4)半導體中Nc的數目是什麼擴展閱讀
半導體晶元的製造過程可以分為沙子原料(石英)、硅錠、晶圓、光刻,蝕刻、離子注入、金屬沉積、金屬層、互連、晶圓測試與切割、核心封裝、等級測試、包裝等諸多步驟,而且每一步里邊又包含更多細致的過程。
1、沙子:硅是地殼內第二豐富的元素,而脫氧後的沙子(尤其是石英)最多包含25%的硅元素,以二氧化硅(SiO2)的形式存在,這也是半導體製造產業的基礎。
2、硅熔煉:12英寸/300毫米晶圓級,下同。通過多步凈化得到可用於半導體製造質量的硅,學名電子級硅(EGS),平均每一百萬個硅原子中最多隻有一個雜質原子。此圖展示了是如何通過硅凈化熔煉得到大晶體的,最後得到的就是硅錠。
3、單晶硅錠:整體基本呈圓柱形,重約100千克,硅純度99.9999%。
4、硅錠切割:橫向切割成圓形的單個矽片,也就是我們常說的晶圓(Wafer)。
5、晶圓:切割出的晶圓經過拋光後變得幾乎完美無瑕,表面甚至可以當鏡子。
6、光刻膠(Photo Resist):圖中藍色部分就是在晶圓旋轉過程中澆上去的光刻膠液體,類似製作傳統膠片的那種。晶圓旋轉可以讓光刻膠鋪的非常薄、非常平。
7、光刻:光刻膠層隨後透過掩模(Mask)被曝光在紫外線(UV)之下,變得可溶,期間發生的化學反應類似按下機械相機快門那一刻膠片的變化。掩模上印著預先設計好的電路圖案,紫外線透過它照在光刻膠層上,就會形成微處理器的每一層電路圖案。
8、溶解光刻膠:光刻過程中曝光在紫外線下的光刻膠被溶解掉,清除後留下的圖案和掩模上的一致。
9、蝕刻:使用化學物質溶解掉暴露出來的晶圓部分,而剩下的光刻膠保護著不應該蝕刻的部分。
10、清除光刻膠:蝕刻完成後,光刻膠的使命宣告完成,全部清除後就可以看到設計好的電路圖案。
再次光刻膠:再次澆上光刻膠(藍色部分),然後光刻,並洗掉曝光的部分,剩下的光刻膠還是用來保護不會離子注入的那部分材料。
11、離子注入(Ion Implantation):在真空系統中,用經過加速的、要摻雜的原子的離子照射(注入)固體材料,從而在被注入的區域形成特殊的注入層,並改變這些區域的硅的導電性。經過電場加速後,注入的離子流的速度可以超過30萬千米每小時。
12、清除光刻膠:離子注入完成後,光刻膠也被清除,而注入區域(綠色部分)也已摻雜,注入了不同的原子。注意這時候的綠色和之前已經有所不同。
13、晶體管就緒:至此,晶體管已經基本完成。在絕緣材(品紅色)上蝕刻出三個孔洞,並填充銅,以便和其它晶體管互連。
14、電鍍:在晶圓上電鍍一層硫酸銅,將銅離子沉澱到晶體管上。銅離子會從正極(陽極)走向負極(陰極)。
15、銅層:電鍍完成後,銅離子沉積在晶圓表面,形成一個薄薄的銅層。
16、拋光:將多餘的銅拋光掉,也就是磨光晶圓表面。
17、金屬層:晶體管級別,六個晶體管的組合,大約500納米。在不同晶體管之間形成復合互連金屬層,具體布局取決於相應處理器所需要的不同功能性。晶元表面看起來異常平滑,但事實上可能包含20多層復雜的電路,放大之後可以看到極其復雜的電路網路,形如未來派的多層高速公路系統。
18、晶圓測試:內核級別,大約10毫米/0.5英寸。圖中是晶圓的局部,正在接受第一次功能性測試,使用參考電路圖案和每一塊晶元進行對比。
19、晶圓切片(Slicing):晶圓級別,300毫米/12英寸。將晶圓切割成塊,每一塊就是晶元的內核(Die)。
20、丟棄瑕疵內核:晶圓級別。測試過程中發現的有瑕疵的內核被拋棄,留下完好的准備進入下一步
21、封裝
參考資料來源:網路-半導體
參考資料來源:網路-簡並半導體