半導體硅什麼材料製成的
A. 半導體硅材料的介紹
半導體硅材料(semiconctor silicon)是最主要的元素半導體材料,包括硅多晶、硅單晶、矽片、硅外延片、非晶硅薄膜等,可直接或間接用於制備半導體器件。
B. 半導體由什麼材料製成
導電性能介於導體與絕緣體之間材料,我們稱之為半導體。在電子器件中,常內用的半導體材料有:元素半導體,容如硅(Si)、鍺(Ge)等;化合物半導體,如砷化鎵(GaAs)等;以及摻雜或製成其它化合物半導體材料,如硼(B)、磷(P)、錮(In)和銻(Sb)等。其中硅是最常用的一種半導體材料。
C. 半導體材料是硅還是二氧化硅
A.硅(元素符號為來Si)的原自子結構示意圖為
,最外層為4個電子,單質硅是一種良好的半導體材料,故A正確;B.純凈的二氧化硅是現代光學及光纖製品的基本原料,二氧化硅是光導纖維的主要成分,故B正確;
C.二氧化硅是H 2 SiO 3 的酸酐,但不溶於水,也與水不反應,故C錯誤;
D.地殼中元素含量的順序由多到少的順序為:氧、硅、鋁、鐵、鈣、鈉、鉀、鎂、氫等,故D正確;
故選C.
D. 半導體硅材料的制備
結晶態硅材料的制備方法通常是先將硅石(SiO2)在電爐中高溫還原為冶金級硅(純度95%~99%),然後將其變為硅的鹵化物或氫化物,經提純,以制備純度很高的硅多晶。包括硅多晶的西門子法制備、硅多晶的硅烷法制備。在製造大多數半導體器件時,用的硅材料不是硅多晶,而是高完整性的硅單晶。通常用直拉法或區熔法由硅多晶製得硅單晶。
世界上直拉硅單晶和區熔硅單晶的用量約為9:1,直拉硅主要用於集成電路和晶體管,其中用於集成電路的直拉硅單晶由於其有明確的規格,且其技術要求嚴格,成為單獨一類稱集成電路用硅單晶。區熔硅主要用於製作電力電子元件,純度極高的區熔硅還用於射線探測器。硅單晶多年來一直圍繞著純度、物理性質的均勻性、結構完整性及降低成本這些問題而進行研究與開發。
材料的純度主要取決於硅多晶的制備工藝,同時與後續工序的玷污也有密切關系。材料的均勻性主要涉及摻雜劑,特別是氧、碳含量的分布及其行為,在直拉生長工藝中採用磁場(見磁控直拉法單晶生長)計算機控制或連續送料,使均勻性得到很大改善;對區熔單晶採用中子嬗變摻雜技術,大大改善了均勻性。在結構完整性方面,直拉硅單晶早已採用無位錯拉晶工藝,目前工作主要放在氧施主、氧沉澱及其誘生缺陷與雜質的相互作用上。
氧在熱處理中的行為非常復雜。直拉單晶經300~500℃熱處理會產生熱施主,而經650℃以上熱處理可消除熱施主,同時產生氧沉澱成核中心,在更高溫度下處理會產生氧沉澱,形成層錯和位錯等誘生缺陷,利用這些誘生缺陷能吸收硅中有害金屬雜質和過飽和熱點缺陷的特性,發展成使器件由源區變成「潔凈區」的吸除工藝,能有效地提高器件的成品率。
對硅單晶錠需經切片、研磨或拋光(見半導體晶片加工)後,提供給器件生產者使用。
某些器件還要求在拋光片上生長一層硅外延層,此種材料稱硅外延片。
非晶硅材料具有連續無規的網格結構,最近鄰原子配位數和結晶硅一樣,仍為4,為共價鍵合,具有短程有序,但是,鍵角和鍵長在一定范圍內變化。由於非晶硅也具有分開的價帶和導帶,因而有典型的半導體特性,非晶硅從一晶胞到另一晶胞不具有平移對稱性,即具有長程無序性,造成帶邊的定域態和帶隙中央的擴展態,非晶硅屬亞穩態,具有某些不穩定性。其制備方法有輝光放電分解法等(見太陽電池材料)。
E. 硅可用作半導體材料
A.硅位於金屬和非金屬元素之間,具有金屬和非金屬的性質,硅單質是半導體的主版要材料,故A正確;權 B.SO 2 具有漂白性,可用於漂白紙漿,故B正確; C.稀硫酸有弱氧化性,能和鋁反應生成氫氣,不能用鋁製品容器盛放,故C錯誤; D.Na 2 O 2 能與CO 2 反應2Na 2 O 2 +2CO 2 ═2Na 2 CO 3 +O 2 ,生成氧氣,可作為呼吸面具或潛水艇中的氧氣的來源,Na 2 O 2 為固體時容易攜帶、反應容易,故D正確; 故選C.
F. 請問"硅"是什麼材料
硅guī(台灣、香港稱矽xī)是一種化學元素,它的化學符號是Si,舊稱矽。原子序數14,相對原子質量28.09,有無定形和晶體兩種同素異形體,同素異形體有無定形硅和結晶硅。屬於元素周期表上IVA族的類金屬元素。 晶體結構:晶胞為面心立方晶胞。 晶體硅為鋼灰色,無定形硅為黑色,密度2.4克/立方厘米,熔點1420℃,沸點2355℃,晶體硅屬於原子晶體,硬而有光澤,有半導體性質。硅的化學性質比較活潑,在高溫下能與氧氣等多種元素化合,不溶於水、硝酸和鹽酸,溶於氫氟酸和鹼液,用於造制合金如硅鐵、硅鋼等,單晶硅是一種重要的半導體材料,用於製造大功率晶體管、整流器、太陽能電池等。硅在自然界分布極廣,地殼中約含27.6%, 結晶型的硅是暗黑藍色的,很脆,是典型的半導體。化學性質非常穩定。在常溫下,除氟化氫以外,很難與其他物質發生反應。 硅的用途: ①高純的單晶硅是重要的半導體材料。在單晶硅中摻入微量的第IIIA族元素,形成p型硅半導體;摻入微量的第VA族元素,形成n型和p型半導體結合在一起,就可做成太陽能電池,將輻射能轉變為電能。在開發能源方面是一種很有前途的材料。另外廣泛應用的二極體、三極體、晶閘管和各種集成電路(包括我們計算機內的晶元和CPU)都是用硅做的原材料。 ②金屬陶瓷、宇宙航行的重要材料。將陶瓷和金屬混合燒結,製成金屬陶瓷復合材料,它耐高溫,富韌性,可以切割,既繼承了金屬和陶瓷的各自的優點,又彌補了兩者的先天缺陷。 可應用於軍事武器的製造第一架太空梭「哥倫比亞號」能抵擋住高速穿行稠密大氣時摩擦產生的高溫,全靠它那三萬一千塊硅瓦拼砌成的外殼。 ③光導纖維通信,最新的現代通信手段。用純二氧化硅拉制出高透明度的玻璃纖維,激光在玻璃纖維的通路里,無數次的全反射向前傳輸,代替了笨重的電纜。光纖通信容量高,一根頭發絲那麼細的玻璃纖維,可以同時傳輸256路電話,它還不受電、磁干擾,不怕竊聽,具有高度的保密性。光纖通信將會使 21世紀人類的生活發生革命性巨變。 ④性能優異的硅有機化合物。例如有機硅塑料是極好的防水塗布材料。在地下鐵道四壁噴塗有機硅,可以一勞永逸地解決滲水問題。在古文物、雕塑的外表,塗一層薄薄的有機硅塑料,可以防止青苔滋生,抵擋風吹雨淋和風化。天安門廣場上的人民英雄紀念碑,便是經過有機硅塑料處理表面的,因此永遠潔白、清新。 有機硅化合物,是指含有Si-O鍵、且至少有一個有機基是直接與硅原子相連的化合物,習慣上也常把那些通過氧、硫、氮等使有機基與硅原子相連接的化合物也當作有機硅化合物。其中,以硅氧鍵(-Si-0-Si-)為骨架組成的聚硅氧烷,是有機硅化合物中為數最多,研究最深、應用最廣的一類,約占總用量的90%以上。 由於有機硅獨特的結構,兼備了無機材料與有機材料的性能,具有表面張力低、粘溫系數小、壓縮性高、氣體滲透性高等基本性質,並具有耐高低溫、電氣絕緣、耐氧化穩定性、耐候性、難燃、憎水、耐腐蝕、無毒無味以及生理惰性等優異特性,廣泛應用於航空航天、電子電氣、建築、運輸、化工、紡織、食品、輕工、醫療等行業,其中有機硅主要應用於密封、粘合、潤滑、塗層、表面活性、脫模、消泡、抑泡、防水、防潮、惰性填充等。隨著有機硅數量和品種的持續增長,應用領域不斷拓寬,形成化工新材料界獨樹一幟的重要產品體系,許多品種是其他化學品無法替代而又必不可少的。 有機硅材料按其形態的不同,可分為:硅烷偶聯劑(有機硅化學試劑)、硅油(硅脂、硅乳液、硅表面活性劑)、高溫硫化硅橡膠、液體硅橡膠、硅樹脂、復合物等。 分布 硅主要以化合物的形式,作為僅次於氧的最豐富的元素存在於地殼中,約佔地表岩石的四分之一,廣泛存在於硅酸鹽和硅石中。 制備 工業上,通常是在電爐中由碳還原二氧化硅而製得。 這樣製得的硅純度為97~98%,叫做金屬硅。再將它融化後重結晶,用酸除去雜質,得到純度為99.7~99.8%的金屬硅。如要將它做成半導體用硅,還要將其轉化成易於提純的液體或氣體形式,再經蒸餾、分解過程得到多晶硅。如需得到高純度的硅,則需要進行進一步的提純處理。 同位素 已發現的硅的同位素共有12種,包括硅25至硅36,其中只有硅28,硅29,硅30是穩定的,其他同位素都帶有放射性。 用途 硅是一種半導體材料,可用於製作半導體器件和集成電路。還可以合金的形式使用(如硅鐵合金),用於汽車和機械配件。也與陶瓷材料一起用於金屬陶瓷中。還可用於製造玻璃、混凝土、磚、耐火材料、硅氧烷、硅烷。
G. 從微觀角度來說硅為什麼可以作半導體材料
因為晶體硅具有一個非常重要的特性——單方向導電,也就是說,電流只能從一端流向另一端,製作半導體器件的原材料就需要具有有這種特有的特性材料。
多角度解釋:
(1)熱敏性 半導體材料的電阻率與溫度有密切的關系.溫度升高,半導體的電阻率會明顯變小.例如純鍺(Ge),溫度每升高10度,其電阻率就會減少到原來的一半.
(2)光電特性 很多半導體材料對光十分敏感,無光照時,不易導電;受到光照時,就變的容易導電了.例如,常用的硫化鎘半導體光敏電阻,在無光照時電阻高達幾十兆歐,受到光照時電阻會減小到幾十千歐.半導體受光照後電阻明顯變小的現象稱為「光導電」.利用光導電特性製作的光電器件還有光電二極體和光電三極體等.
近年來廣泛使用著一種半導體發光器件--發光二極體,它通過電流時能夠發光,把電能直接轉成光能.目前已製作出發黃,綠,紅,藍幾色的發光二極體,以及發出不可見光紅外線的發光二極體.
另一種常見的光電轉換器件是硅光電池,它可以把光能直接轉換成電能,是一種方便的而清潔的能源.
(3)攙雜特性 純凈的半導體材料電阻率很高,但摻入極微量的「雜質」元素後,其導電能力會發生極為顯著的變化.例如,純硅的電阻率為214×1000歐姆/厘米,若摻入百萬分之一的硼元素,電阻率就會減小到0.4歐姆/厘米.因此,人們可以給半導體摻入微量的某種特定的雜質元素,精確控制它的導電能力,用以製作各種各樣的半導體器件
半導體的導電性能比導體差而比絕緣體強.實際上,半導體與導體、絕緣體的區別在不僅在於導電能力的不同,更重要的是半導體具有獨特的性能(特性).
1. 在純凈的半導體中適當地摻入一定種類的極微量的雜質,半導體的導電性能就會成百萬倍的增加—-這是半導體最顯著、最突出的特性.例如,晶體管就是利用這種特性製成的.
2. 當環境溫度升高一些時,半導體的導電能力就顯著地增加;當環境溫度下降一些時,半導體的導電能力就顯著地下降.這種特性稱為「熱敏」,熱敏電阻就是利用半導體的這種特性製成的.
3. 當有光線照射在某些半導體時,這些半導體就像導體一樣,導電能力很強;當沒有光線照射時,這些半導體就像絕緣體一樣不導電,這種特性稱為「光敏」.例如,用作自動化控制用的「光電二極體」、「光電三極體」和光敏電阻等,就是利用半導體的光敏特性製成的.
由此可見,溫度和光照對晶體管的影響很大.因此,晶體管不能放在高溫和強烈的光照環境中.在晶體管表面塗上一層黑漆也是為了防止光照對它的影響.最後,明確一個基本概驗:所謂半導體材料,是一種晶體結構的材料,故「半導體」又叫「晶體」.
P性半導體和N型半導體----前面講過,在純凈的半導體中加入一定類型的微量雜質,能使半導體的導電能力成百萬倍的增加.加入了雜質的半導體可以分為兩種類型:一種雜質加到半導體中去後,在半導體中會產生大量的帶負電荷的自由電子,這種半導體叫做「N型半導體」(也叫「電子型半導體」);另一種雜質加到半導體中後,會產生大量帶正電荷的「空穴」,這種半導體叫「P型半導體」(也叫「空穴型半導體」).例如,在純凈的半導體鍺中,加入微量的雜質銻,就能形成N型半導體.同樣,如果在純凈的鍺中,加入微量的雜質銦,就形成P型半導體.
一個PN結構成晶體二極體----設法把P型半導體(有大量的帶正電荷的空穴)和N型半導體(有大量的帶負電荷的自由電子)結合在一起,見圖1所示.
圖1
在P型半導體的N型半導體相結合的地方,就會形成一個特殊的薄層,這個特殊的薄層就叫「PN結」.晶體二極體實際上就是由一個PN結構成的(見圖1).
例如,收音機中應用的晶體二極體,其觸絲(即觸針)部分相當於P型半導體,N型鍺片就是N型半導體,他們之間的接觸面就是PN結.P端(或P端引出線)叫晶體二極體的正端(也稱正極).N端(或N端引出線)叫晶體二極體的負端(也稱負極).
如果像圖2那樣,把正端連接電池的正極,把負端接電池的負極,這是PN結的電阻值就小到只有幾百歐姆了.因此,通過PN結的電流(I=U/R)就很大.這樣的連接方法(圖2a)叫「正向連接」.正向連接時,晶體管二極體(或PN結)兩端承受的電壓叫「正向電壓」;處在正向電壓下,二極體(或PN結)的電阻叫「正向電阻」,在正向電壓下,通過二極體(或PN結)的電流叫「正向電流」.很明顯,因為晶體二極體的正向電阻很小(幾百歐姆),在一定正向電壓下,正向電流(I=U/R)就會很大----這表明在正向電壓下,二極體(或PN結)具有像導體一樣的導電本領.
圖2a 圖2b
反過來,如果把P端接到電池的負極,N端接到電池的正極(見圖2b).這時PN結的電阻很大(大到幾百千毆),電流(I=U/R)幾乎不能通過二極體,或者說通過的電流很微弱.這樣的連接方法叫「反向連接」.反向連接時,晶體管二極體(或PN結)兩端承受的電壓叫「反向電壓」;處在反向電壓下,二極體(或PN結)的電阻叫「反向電阻」,在反向電壓下,通過二極體(或PN結)的電流叫「反向電流」.顯然,因為晶體二極體的正向電阻很大(幾百千歐姆),在一定的反向電壓下,正向電流(I=U/R)就會很小,甚至可以忽略不計,----這表明在一定的反向電壓下,二極體(或PN結)幾乎不導電.
上敘實驗說明這樣一個結論:晶體二極體(或PN結)具有單向導電特性.
晶體二極體用字母「D」代表,在電路中常用圖3的符號表示,即表示電流(正電荷)只能順著箭頭方向流動,而不能逆著箭頭方向流動.圖3是常用的晶體二極體的外形及符號.
圖3
利用二極體的單向導電性可以用來整流(將交流電變成直流電)和檢波(從高頻或中頻電信號取出音頻信號)以及變頻(如把高頻變成固定的中頻465千周)等.
PN結的極間電容----PN結的P型和N型兩快半導體之間構成一個電容量很小的電容,叫做「極間電容」(如圖4所示).由於電容抗隨頻率的增高而減小.所以,PN結工作於高頻時,高頻信號容易被極間電容或反饋而影響PN結的工作.但在直流或低頻下工作時,極間電容對直流和低頻的阻抗很大,故一般不會影響PN結的工作性能.PN結的面積越大,極間電容量越大,影響也約大,這就是面接觸型二極體(如整流二極體)和低頻三極體不能用於高頻工作的原因