半導體什麼叫輕度補償
A. 高純度半導體和高度補償半導體如何區分
可以考慮根據電來阻率的源變化,從低溫度開始,如果是本徵半導體即高純度,電阻率隨溫度升高單調下降,但是如果電阻率出現先下降後上升然後再單調下降的話就是高補償(參照半導體物理書上給出的摻雜半導體電阻率與溫度的曲線)。這個答案大家也就總結如此,理論上可行,但是總體來說實際操作不太靠譜,畢竟要降到足夠低的溫度。 順帶鄙視1樓混答案
B. 為什麼用半導體應變片測量應力時,必須考慮溫度補償,請寫出具體補償措施
半導體應變計不適合應力測量,熱輸出太大
C. 什麼叫半導體的輕摻雜、中摻雜和重摻雜
就是在四價的半導體內加入導電的元素,比如在硅,鍺中加入三價的硼或者五價的磷等內來提高導電性,加入容的愈多,半導體材料的導電性越強。以加入的比例不同分為輕摻雜、中摻雜和重摻雜。
重摻雜的半導體中,摻雜物和半導體原子的濃度比約是千分之一,而輕摻雜則可能會到十億分之一的比例。
摻雜之後的半導體能帶會有所改變。依照摻雜物的不同,本徵半導體的能隙之間會出現不同的能階。施體原子會在靠近導帶的地方產生一個新的能階,而受體原子則是在靠近價帶的地方產生新的能階。
假設摻雜硼原子進入硅,則因為硼的能階到硅的價帶之間僅有0.045電子伏特,遠小於硅本身的能隙1.12電子伏特,所以在室溫下就可以使摻雜到硅里的硼原子完全解離化。
(3)半導體什麼叫輕度補償擴展閱讀:
輕摻雜中摻雜的半導體材料應用:
半導體材料主要做半導體器件,構成電路,有的還可以做成發光的LED。
輕摻雜和重摻雜一般同時出現在一個器件里的,因為輕重摻雜的費米能級不一樣,所以設計器件的時候有的時候把相同的半導體材料摻雜到不同的濃度實現功能。
D. 兩個半導體n型,一個是雜志補償的,另一個無雜質補償,他們的nc nv 一樣,請問哪個遷移率高
同一溫度下同種半導體遷移率受材料內缺陷散射影響
雜質濃度高 遷移率就低
載流子濃度一樣時 雜質補償的雜質濃度高 遷移率低
E. 高阻的本徵半導體材料和高阻的高度補償的半導體材料的區別是什麼
半導體材料:氧化鋅半導瓷 化學式:ZnO
基本概況:ZnO(氧化鋅)是一種新型的化合物半導體材料Ⅱ一Ⅵ寬禁帶(E =3.37eV)。在常溫常壓下其是一種非常典型的直接寬禁半導體材料,穩定相是六方纖鋅礦結構,其禁帶寬度所對應紫外光波長,有希望能夠開發出藍綠光、藍光、紫外光等等多種發光器件。
氧化鋅的能帶隙和激子束縛能較大,透明度高,有優異的常溫發光性能,在半導體領域的液晶顯示器、薄膜晶體管、發光二極體等產品中均有應用。此外,微顆粒的氧化鋅作為一種納米材料也開始在相關領域發揮作用。
晶體數據:
針狀體根部直徑 (μm) 0.1~10
比熱 (J/g·k) 5.52
耐熱性能 (℃)
1720(升華)
真實密度 (g/cm3) 5.8
表觀密度 (g/cm3) 0.01~0.5
粉體電阻率 (Ω·cm) 104~109
介電常數 (實部) 4.5~30
介電常數 (虛部) 20~135
拉伸強度 (MPa) 1.2×104
彈性模量 (MPa) 3.5×105
熱膨脹率 (%/℃) 4×106
氧化鋅空間結構 電鏡下的氧化鋅半導體材料
制備方法:純氧化鋅是煅燒鋅礦石或在空氣中燃燒鋅條而得。氧化鋅結晶是六角晶系,晶格常數α=3.25×10-10m,c=5.20×10-10m。室溫下滿足化學計量比關系的氧化鋅晶體或多晶體中導電載流子極少,具有絕緣體的性能。在空氣中經高溫處理後,將會因氧的過剩或不足而成為偏離化學計量比關系的不完整晶體,即含有氧缺位或氧填隙鋅的非化學計量比結晶,使自由電子或空穴大大增多,氧化鋅由白色絕緣體變成青黑色半導體。當在氧化鋅中加入適量的其他氧化物或鹽類,如Bi2O3、Sb2O3、Co2O3、MnO、Cr2O3、Al2O3或Al(NO3)2等作為添加劑,按一般的陶瓷工藝成型燒結,可以製得氧化鋅半導瓷。
理論模型:六方纖鋅礦結構是理想的氧化鋅,對稱性C6v-4、屬於P63mc空間群,品格常數C=O.521 nm,Y=120 ,a=b=O.325 nm,α=β= 90。。其中c/a較理想的六角柱緊堆積結構的1.633稍小為1.602。其它方向的氧ZnO鍵長為O.197 nm,只有c軸方向為0.199 nm,其晶胞由鋅的六角密堆積與氧的六角密堆積反向套夠而成。本文所有的及孫模型都是以超晶胞為基礎的模型。我們可以看出,在氧化鋅中的配位體是一個三角錐,錐頂原子和中心原子的鍵長與錐面三個原子的鍵長相比要稍大,其棱長小於底面邊長。所以,ZnO 四面體為晶體中02-一配位多面體,O2-與Zn 配位情況基本相同。
計算結果:利用實驗晶格參數對理想的ZnO晶體的電子結構進行了計算。其中包括總體態密度,能帶結構,分波態密度。圖3,圖4,圖5為計算結果。用其他理論方法計算的結果與本文計算結果相符合。我們可以從圖3,圖4,圖5中看出,基本上,ZnO的價帶可分為兩個區域,分別是-4.0~0 eV的上價帶區以及一6.0~L4.0 eV的下價帶。很顯然,ZnO下價帶區則主要是Zn3d態貢獻的,而上價帶區則主要是由02p態形成的。在一18 eV處由02s態貢獻的價帶部分,與其他兩個價帶由於之間的相互作用相對較弱,本文不做相關討論。對於主要來源干Zn4s態貢獻的導帶部分,從Zn4s態到02p態電子具有明顯的躍遷過程,氧位置處的局域態密度的引力中心受到影響向低能級方向移動,這就表明了,理想ZnO是一個共價鍵較弱,離子性較強的混合鍵金屬氧化物半導體材料。
組成:這種半導瓷由半導電的氧化鋅晶粒及添加劑成分構成的晶粒間層所組成,其理想結構模型如圖。由於每一個氧化鋅晶粒和晶粒間層之間都能形成一個接觸區,具有一般半導體接觸的單向導電性,所以兩個晶粒間存在兩個相反位置的整流結,一塊氧化鋅半導瓷片是大量相反放置的整流結組的堆積。
圖6:氧化鋅半導瓷空間結構
氧化鋅半導瓷的伏安特性:當外加電壓於這種材料時,低電壓下,由於反偏整流結的阻擋作用,材料呈高阻狀態,具有絕緣性能。當電壓高達一定值時,整流結發生擊穿,材料電阻率迅速下降,成為導電材料,可以通過相當大密度的電流。
圖7:氧化鋅半導體瓷的伏安特性
作用:氧化鋅半導瓷的非線性電壓電流關系。利用這種對稱的非線性伏安特性可以製成各種電壓限幅器、能量吸收裝置等,如電力系統的過電壓保護裝置,特別是由於這類材料低電壓下的電阻率高,因而在長期工作電壓下漏電流小、發熱小,可以做成不帶火花間隙的高壓避雷器;而高電壓下電阻低、殘壓小,能把過電壓限制在更低的水平上,使電網和電工設備的絕緣水平有可能降低,特別是在超高壓電網,這一點更為重要。
拓展:稀磁半導體材料(Diluted magnetic semiconctors,DMS)
稀釋磁性半導體簡稱稀磁半導體(Diluted Magneticsemi Conctors,DMS),是利用3d族過渡金屬或4f族稀土金屬的磁性離子替代Ⅱ2Ⅵ族、Ⅳ2Ⅵ族、Ⅱ2Ⅴ族或Ⅲ2Ⅴ族等化合物半導體中的部分非磁性陽離子而形成的新型半導體材料,又可稱為半磁半導體(Semi Magnetic Semi Conctors,SMSC)材料或半導體自旋電子材料。之所以稱為稀磁半導體是由於相對於普通的磁性材料,其磁性元素的含量較少。這類材料由於陽離子替代而存在局域磁性順磁離子,具有很強的局域自旋磁矩。局域順磁離子與遷移載流子(電子或空穴)之間的自旋2自旋相互作用結果產生一種新的交換相互作用,使得稀磁半導體具有很多與普通半導體截然不同的特殊性質,如磁性、顯著的磁光效應和磁輸運性質。稀磁半導體能利用電子的電荷特性和自旋特性,即兼具半導體材料和磁性材料的雙重特性。它將半導體的信息處理與磁性材料的信息存儲功能、半導體材料的優點和磁性材料的非易失性兩者融合在一起,這種材料研製成功將是材料領域的革命性進展。同時,稀磁半導體在磁性物理學和半導體物理學之間架起了一道橋梁。
ZnO作為一種寬頻隙半導體,激子束縛能較高(60meV),具有溫度穩定性好、光透過率高、化學性能穩定,原料豐富易得、價格低廉等優點,並且過渡金屬離子易於摻雜,可制備性能良好的稀磁半導體,因而成為目前稀磁半導體材料的研究熱點。
國內研究以及原理:近年來,由於1i摻雜的Zn()材料可能同時具有鐵電性和鐵磁性,國內很多研究者都對它進行了研究。南京大學的宋海岸等制備了Ni、I』i共摻的ZnO薄膜,發現由於Li摻雜引入了空穴,使鐵磁性減弱 ]。北京航空航天大學的李建軍等制備了I Co共摻的ZnO納米顆粒,實驗發現,當摻雜濃度少於9 時體系的鐵磁性會增強,其原因是摻入後形成了填隙原子,電子濃度明顯增加,使得束縛磁極子濃度增加,且磁極子之間容易發生重疊,最終導致鐵磁耦合作用增強。武漢大學的C W Zou等制備了Mn、Li共摻雜的ZnO薄膜,研究了不同Mn摻雜濃度的ZnO樣品。但這些研究中對Li、Mn共摻雜ZnO陶瓷的磁性研究並不常見。
應用現狀與前景展望
(1)改變組分獲得所需的光譜效應
通過改變磁性離子的濃度可得到所需要的帶隙,從而獲得相應的光譜效應。由於其響應波長可覆蓋從紫外線到遠紅外線的寬范圍波段,這種DMS是制備光電器件、光探測器和磁光器件的理想材料。在Ⅲ2Ⅴ族寬頻隙稀磁半導體GaN中摻入不同的稀土磁性元素可發出從可見光到紅外的不同波長的光,加上GaN本身可發紫外光,因此摻稀土GaN材料可發出從紫外到紅外波段的光,如在GaN中摻Er可發綠光,而摻Pr可發紅光等。
1994年Wilson等[24]在摻Er的GaN薄膜中首次觀察到1.54
μm的紅外光熒光。1998年Steckl等採用Er原位摻雜方法首次獲得綠光發射[25],摻Er的GaN的另一個重要特性是其溫度猝滅效應很弱,這對於制備室溫發光器件非常重要。後來紅光和藍光器件相繼研製成功,這些都可以作為光通信和光電集成的光源。
(2)sp2d交換作用的應用
利用DMS的巨法拉第旋轉效應可制備非倒易光學器件,也可用於制備光調諧器、光開關和感測器件。
DMS的磁光效應為光電子技術開辟了新的途徑。利用其磁性離子和截流子自旋交換作用(sp2d作用)所引起的巨g因子效應,可制備一系列具有特殊性質的稀磁半導體超晶格和量子阱器件。這種量子阱和超晶格不僅具有普通量子阱和超晶格的電學、光學性質,而且還具有稀磁半導體的磁效應,因此器件具有很多潛在的應用價值。利用磁性和半導體性實現自旋的注入與輸運,可造出新型的自旋電子器件,如自旋過濾器和自旋電子基發光二極體等。
(3)深入研究自旋電子學,推動DMS的實用化
自旋電子學是目前固體物理和電子學中的一個熱點,其核心內容是利用和控制固體,尤其是半導體中的自旋自由度。近年來以稀磁半導體為代表的自旋電子學的研究相當活躍,各國科研機構和各大公司都投入了巨大財力和人力從事此領域的研究。利用具有磁性或自旋相關性質的DMS基材料可制出一類新型器件———既利用電子、空穴的電荷也利用它們的自旋。這些新材料和人造納米結構,包括異質結構(HS)、量子阱(QW)和顆粒結構一直是一些新型功能的「沃土」———與自旋相關的輸運、磁阻效應和磁光效應。自旋電子學可用於計算機的硬驅動,在計算機存儲器中極具潛力。在高密度非易失性存儲器、磁感應器和半導體電路的集成電路、光隔離器件和半導體激光器集成電路以及量子計算機等領域,DMS材料均有重大的潛在應用。但上述以稀磁半導體為基礎的自旋電子器件的研製尚處於起步階段,距實用化還有很長的路程。自旋電子學與自旋電子學器件研究的深入,將加深DMS機理的研究和理論的探索,推動DMS的實用化過程。
(4)室溫DMS的研究
為了應用方便,需要開發高居里溫度(Tc)的DMS材料(高於室溫)。室溫下具有磁性為磁性半導體的應用提供了可能。擴展更多的摻雜磁性元素或生長更多種類材料來提高DMS材料的居里溫度是當前的首要問題。近來Hori等成功摻入5%Mn在GaN中,獲得了高於室溫的Tc;報道表明(Zn,Co)O的居里溫度可達到290~380K[26]。Dietl等[6]採用Zener模型對閃鋅礦結構的磁半導體計算表明,GaMnN和ZnMnO具有高達室溫的居里溫度,該計算結果對實驗研究提供了很好的理論依據。但是,如何將磁性和半導體屬性有機地結合起來仍然是值得進一步研究的問題。
F. 半導體雜質高度補償怎樣檢驗
你這個問題提得很好.
因為高度補償半導體的有效載流子濃度很低,類似於本徵半導體專,所以採用屬常規的三探針技術、四探針技術等測量電阻的方法是無效的,就是採用電容-電壓技術等也都不能很好檢測出來.因此,只有採用光吸收等光學技術才有可能檢測出雜質.
G. 什麼叫做本徵半導體
顧名思義:導電性能介於導體(conctor)與絕緣體(insulator)之間的材料,叫做半導體(semiconctor). 物質存在的形式多種多樣,固體、液體、氣體、等離子體等等。我們通常把導電性和導電導熱性差或不好的材料,如金剛石、人工晶體、琥珀、陶瓷等等,稱為絕緣體。而把導電、導熱都比較好的金屬如金、銀、銅、鐵、錫、鋁等稱為導體。可以簡單的把介於導體和絕緣體之間的材料稱為半導體。與導體和絕緣體相比,半導體材料的發現是最晚的,直到20世紀30年代,當材料的提純技術改進以後,半導體的存在才真正被學術界認可。 半導體的分類,按照其製造技術可以分為:分立器件、光電半導體、邏輯IC、模擬IC、儲存器等大類,一般來說這些還會被分成小類。此外還有以應用領域、設計方法等進行分類,最近雖然不常用,單還是按照IC、LSI、VLSI(超大LSI)及其規模進行分類的方法。此外,還有按照其所處理的信號,可以分成模擬、數字、模擬數字混成及功能進行分類的方法。 [編輯本段]半導體定義 電阻率介於金屬和絕緣體之間並有負的電阻溫度系數的物質。 半導體室溫時電阻率約在10E-5~10E7歐·米之間,溫度升高時電阻率指數則減小。 半導體材料很多,按化學成...
H. 對於完全補償的半導體,怎麼求電導率
電導率,物理學概念,指在介質中該量與電場強度之積等於傳導電流密度,也可以稱為導電率。對於各向同性介質,電導率是標量;對於各向異性介質,電導率是張量。
電阻率是用來表示各種物質電阻特性的物理量。某種物質所製成的原件(常溫下20°C)的電阻與橫截面積的乘積與長度的比值叫做這種物質的電阻率。電阻率與導體的長度、橫截面積等因素無關,是導體材料本身的電學性質,由導體的材料決定,且與溫度有關。
電阻的英文名稱為resistance,通常縮寫為R,它是導體的一種基本性質,與導體的尺寸、材料、溫度有關。歐姆定律指出電壓、電流和電阻三者之間的關系為I=U/R,亦即R=U/I。電阻的基本單位是歐姆,用希臘字母逗Ω地來表示。通常逗電阻地有兩重含義,一種是物理學上的逗電阻地這個物理量,另一個指的是電阻這種電子元件。電阻元件的電阻值大小一般與溫度,材料,長度,還有橫截面積有關,衡量電阻受溫度影響大小的物理量是溫度系數,其定義為溫度每升高1℃時電阻值發生變化的百分數。電阻的主要物理特徵是變電能為熱能,也可說它是一個耗能元件,電流經過它就產生內能。電阻在電路中通常起分壓、分流的作用。對信號來說,交流與直流信號都可以通過電阻
1、半導體通常是指導電率介於導體與絕緣體之間的材料.
電導率的范圍是:10^(-8)→10³ (西門子/厘米)
也就是應用了它們的半導電性.
2、半導體是現代電子儀器的最基本的材料,這些儀器包括:無線電、電腦、電話等等.
3、半導體器件包括各種二極體、三極體、太陽能電池、硅控放大器、數字電路、集成電路等等.
4、電導率低於10^(-8)西門子/厘米)的材料稱為絕緣體.
電導率高於10³(西門子/厘米)的材料成為導體.
所有的導體都有大量的自由電子.
5、電阻是指導體內阻礙電流流動的能力,電阻率越大,阻礙電流的能力就越強.電導率的倒數就是電阻率.
6、任何導體、半導體、絕緣體,都有或多或少的阻礙電流的能力,電阻率不可能為零,在超低溫下,電阻率趨向於0.
7、任何消耗電能的器件,包括導線都有電阻.
8、漢語中的電阻概念比較籠統,英語中有明確區分:Resistor = 電阻器;Resistance = 電阻值;Resistivity = 電阻率.通常我們將電阻器與電阻值混為一談,都稱為電阻.任何用電器都是電阻器,任何導線本身也是電阻器.導線消耗電能,降低電壓,所以,我們需要變壓器升高電壓,保持正常的工作電壓.但是經過變壓器之後,電流強度就下降了.導線自然是導體,功能是導電,是盡可能的減低傳輸過程中的能量損失.用電器是將電能轉換成其他能量的轉換器,要的就是消耗電能,轉化成其他能量.
9、實驗室的電阻器完全是消耗電能的元件,並非將電能轉換成其他能量.它的功用只是用於控制實驗時的電流強度、分出去的電壓(可變電阻可做分壓器)符合實驗的要求,以便實驗順利進行.