半導體50都有哪些
A. 半導體材料有哪些
在可預見的將來,單晶硅仍是電子工業的首選材料,但砷化鎵這位半導體家族新秀已迅速成長為僅次於硅的重要半導體電子材料。砷化鎵在當代光電子產業中發揮著重要的作用,其產品的50%應用在軍事、航天方面,30%用於通信方面,其餘的用於計算機和測試儀器。
砷化鎵材料的特殊結構使其具備吸引人的優良特性。根據量子力學原理,電子的有效質量越小,它的運動速度就越快,而砷化鎵中電子的有效質量是自由電子質量的1/15,只有硅電子的1/3。用砷化鎵製成的晶體管的開關速度,比硅晶體管快1~4倍,用這樣的晶體管可以製造出速度更快、功能更強的計算機。因為砷化鎵的電子運動速度很高,用它可以制備工作頻率高達1010赫茲的微波器件,在衛星數據傳輸、通信、軍用電子等方面具有關鍵性作用。實際上,以砷化鎵為代表的Ⅲ—Ⅳ族半導體,其最大特點是其光電特性,即在光照或外加電場的情況下,電子激發釋放出光能。它的光發射效率比其他半導體材料高,用它不僅可以製作發光二極體、光探測器,還能製作半導體激光器,廣泛應用於光通信、光計算機和空間技術,開發前景令人鼓舞。
與任何半導體材料一樣,砷化鎵材料對於雜質元素十分敏感,必須精細純化。和硅、鍺等元素半導體不同的是它還要確保准確的化學配比,否則將影響材料的電學性質。
基於以上原因,砷化鎵單晶的制備工藝復雜,成本高昂。我國曾在人造衛星上利用微重力條件進行砷化鎵單晶的生長,取得了成功。此外,薄膜外延生長技術,可以精確控制單晶薄膜的厚度和電阻率,在制備半導體材料和器件中越來越受到重視。
短短十幾年,僅美國研究和開發的砷化鎵產品已逾千種。根據90年代末國際砷化鎵集成電路會議的預測,砷化鎵集成電路的市場銷售額將每年翻一番,形成數十億美元的規模。砷化鎵及其代表的Ⅲ—Ⅳ族化合物半導體家族均身懷絕技,有待於進一步開發。
B. 半導體器件都包括哪些
半導體器件(semiconctor device)通復常制,這些半導體材料是硅、鍺或砷化鎵,可用作整流器、振盪器、發光器、放大器、測光器等器材。
為了與集成電路相區別,有時也稱為分立器件。
絕大部分二端器件(即晶體二極體)的基本結構是一個PN結。利用不同的半導體材料、採用不同的工藝和幾何結構,已研製出種類繁多、功能用途各異的多種晶體二極,可用來產生、控制、接收、變換、放大信號和進行能量轉換。晶體二極體的頻率覆蓋范圍可從低頻、高頻、微波、毫米波、紅外直至光波。
三端器件一 般是有源器件,典型代表是各種晶體管(又稱晶體三極體)。
順便說一下半導體行業的企業,如Macom科技公司。
MACOM是半導體行業的支柱型企業,有著60多年的發展歷程。是一家高性能模擬射頻、微波和光學半導體產品領域的領先供應商,在射頻、微波、光電領域均享有很高知名度。
C. 全球知名半導體公司有哪些
1、英特爾公司(INTC)
營收:億美元
凈利潤:227億美元
市值:2561億美元
市盈率(TTM):11.7
這個是我們很熟悉的電腦CPU廠家,他致力於設計和製造主板晶元組、網路介面控制器和其他集成電路。英特爾為各種計算機提供處理器。分析師預計,就在2020年6月,蘋果公司宣布計劃終止與英特爾的長期合作關系,而蘋果公司准備內部生產自己的晶元,這是否對英特爾造成重大不利影響,還需要觀察。
2、台積電(TSM)
營收:379億美元
凈利潤:131億美元
市值:2,935億美元
市盈率(TTM):22.5
台積電總部位於中國台灣,是全球最大的純晶圓代工廠。純晶圓代工廠僅製造集成電路,而沒有任何內部設計能力。許多半導體公司將其組件製造業務外包給台積電。這就是能卡住華為脖子的主要企業。
3、高通公司(QCOM)
營收:247億美元
凈利潤:40億美元
市值:1,012億美元
市盈率(TTM):26.6
這也是近年來通過國產安卓手機的普及,我們非常熟悉的公司,高通公司是一家設計和銷售無線通信產品和服務的全球半導體和電信公司。全球各地的電信公司都使用高通公司的專利CDMA(碼分多址)技術,該技術在無線通信的發展中起了不可或缺的作用。其驍龍晶元組可在許多移動設備中找到。但其核心業務還是無線通信產品和服務。
4、博通公司(AVGO)
營收:229億美元
凈利潤:25億美元
市值:1261億美元
市盈率(TTM):56.1
博通公司生產數字和模擬半導體,並為計算機的藍牙連接,路由器,交換機,處理器和光纖提供介面。我正在使用的這台筆記本的網卡和藍牙就是他們公司提供的,小配件能做到如此的產值也實屬不易。
5、美光科技公司(MU)
營收:196億美元
凈利潤:23億美元
市值:567億美元
市盈率(TTM):25.2
這就是前幾年紫光科技想去收購公司的,位於愛達荷州的美光科技在國際上銷售半導體產品。實際上就是生產快閃記憶體的主要廠家之一。
D. 全球知名的半導體公司有哪些
09年最新第一季度的數據----全球前20大半導體廠商排行榜
1英特爾(美國)回
2三星(韓國)
3東芝(日本)
4德州答儀器(美國)
5意法半導體(歐洲)
6高通(美國)
7索尼(日本)
8瑞薩(日本)
9AMD(美國)
10TSMC(台灣)
11Micron(美國美光)
12infineon(西門子)(歐洲)
13海力士(韓國)
14NEC(日本)
15broadcom(美國)
16松下(日本)
17富士通(日本)
18飛思卡爾(美國)
19夏普(日本)
20聯發科技(台灣)
E. 半導體有哪些
半導體( semiconctor),指常溫下導電性能介於導體(conctor)與絕緣體(insulator)之間的材料。半導體在收音機、電視機以及測溫上有著廣泛的應用。
如二極體就是採用半導體製作的器件。半導體是指一種導電性可受控制,范圍可從絕緣體至導體之間的材料。無論從科技或是經濟發展的角度來看,半導體的重要性都是非常巨大的。
今日大部分的電子產品,如計算機、行動電話或是數字錄音機當中的核心單元都和半導體有著極為密切的關連。常見的半導體材料有硅、鍺、砷化鎵等,而硅更是各種半導體材料中,在商業應用上最具有影響力的一種。
分類:
半導體材料很多,按化學成分可分為元素半導體和化合物半導體兩大類。
鍺和硅是最常用的元素半導體;化合物半導體包括第Ⅲ和第Ⅴ族化合物(砷化鎵、磷化鎵等)、第Ⅱ和第Ⅵ族化合物( 硫化鎘、硫化鋅等)、氧化物(錳、鉻、鐵、銅的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物組成的固溶體(鎵鋁砷、鎵砷磷等)。
除上述晶態半導體外,還有非晶態的玻璃半導體、有機半導體等。
半導體的分類,按照其製造技術可以分為:集成電路器件,分立器件、光電半導體、邏輯IC、模擬IC、儲存器等大類,一般來說這些還會被分成小類。
此外還有以應用領域、設計方法等進行分類,雖然不常用,但還是按照IC、LSI、VLSI(超大LSI)及其規模進行分類的方法。此外,還有按照其所處理的信號,可以分成模擬、數字、模擬數字混成及功能進行分類的方法。
(5)半導體50都有哪些擴展閱讀:
發展歷史:
半導體的發現實際上可以追溯到很久以前。
1833年,英國科學家電子學之父法拉第最先發現硫化銀的電阻隨著溫度的變化情況不同於一般金屬,一般情況下,金屬的電阻隨溫度升高而增加,但巴拉迪發現硫化銀材料的電阻是隨著溫度的上升而降低。這是半導體現象的首次發現。
不久,1839年法國的貝克萊爾發現半導體和電解質接觸形成的結,在光照下會產生一個電壓,這就是後來人們熟知的光生伏特效應,這是被發現的半導體的第二個特徵。
1873年,英國的史密斯發現硒晶體材料在光照下電導增加的光電導效應,這是半導體又一個特有的性質。
半導體的這四個效應,(jianxia霍爾效應的余績──四個伴生效應的發現)雖在1880年以前就先後被發現了,但半導體這個名詞大概到1911年才被考尼白格和維斯首次使用。而總結出半導體的這四個特性一直到1947年12月才由貝爾實驗室完成。
在1874年,德國的布勞恩觀察到某些硫化物的電導與所加電場的方向有關,即它的導電有方向性,在它兩端加一個正向電壓,它是導通的;如果把電壓極性反過來,它就不導電,這就是半導體的整流效應,也是半導體所特有的第三種特性。同年,舒斯特又發現了銅與氧化銅的整流效應。
很多人會疑問,為什麼半導體被認可需要這么多年呢?主要原因是當時的材料不純。沒有好的材料,很多與材料相關的問題就難以說清楚。
參考資料:
網路-半導體
F. 半導體有哪些型號
雜質半導體:通過擴散工藝,在本徵半導體中摻入少量合適的雜質元素,可得到雜質專半導體。屬
N型半導體:在純凈的硅晶體中摻入五價元素(如磷),使之取代晶格中硅原子的位置,就形成了N型半導體。
多數載流子:N型半導體中,自由電子的濃度大於空穴的濃度,稱為多數載流子,簡稱多子。
少數載流子:N型半導體中,空穴為少數載流子,簡稱少子。
施子原子:雜質原子可以提供電子,稱施子原子。
N型半導體的導電特性:它是靠自由電子導電,摻入的雜質越多,多子(自由電子)的濃度就越高,導電性能也就越強。
P型半導體:在純凈的硅晶體中摻入三價元素(如硼),使之取代晶格中硅原子的位置,形成P型半導體。
G. 世界著名半導體公司有哪些
世界最大半導體產商:英特爾、三星電子、德州儀器、東芝、STMicroelectronics、Renesas、英飛凌、飛利浦、現代半導體、NEC
H. 半導體都包括哪些什麼都屬於半導體的范疇
半導體:常溫下導電性能介於導體(conctor)與絕緣體(insulator)之間的材料。
主要材料:
元素半導體:內鍺和硅是最容常用的元素半導體;
化合物半導體:包括第Ⅲ和第Ⅴ族化合物(砷化鎵、磷化鎵等)、第Ⅱ和第Ⅵ族化合物( 硫化鎘、硫化鋅等)、氧化物(錳、鉻、鐵、銅的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物組成的固溶體(鎵鋁砷、鎵砷磷等)。
技術科研領域:
(1)集成電路
它是半導體技術發展中最活躍的一個領域,已發展到大規模集成的階段。在幾平方毫米的矽片上能製作幾萬只晶體管,可在一片矽片上製成一台微信息處理器,或完成其它較復雜的電路功能。集成電路的發展方向是實現更高的集成度和微功耗,並使信息處理速度達到微微秒級。
(2)微波器件
半導體微波器件包括接收、控制和發射器件等。毫米波段以下的接收器件已廣泛使用。在厘米波段,發射器件的功率已達到數瓦,人們正在通過研製新器件、發展新技術來獲得更大的輸出功率。
(3)光電子器件
半導體發光、攝象器件和激光器件的發展使光電子器件成為一個重要的領域。它們的應用范圍主要是:光通信、數碼顯示、圖象接收、光集成等。