半導體晶元主要的發展趨勢是什麼
1. 晶元發展前景
1.器件特徵尺寸減小
隨著信息技術與材料工程技術的發展,晶元器件的特徵尺寸將逐步實現物理極限的突破,呈現出物理尺寸逐漸減小、性能和穩定性逐漸增加的發展趨勢,未來將可能出現從微米到納米再到亞納米、超納米的尺寸等級。中國晶元發展趨勢分析,這種集成器件的體積減小將使得電路的集成度更高,製造工藝更加復雜,同時對於晶元質量的需求也越來越高,將極大地推動攜帶型智能設備的發展和推廣。據國際半導體技術發展協會估計,未來特徵尺寸為22mm的CMOS電路以及實際柵長為9mm的MPU將會實現。
2.新材料和新器件的出現
中國晶元發展趨勢分析,未來隨著晶元特徵尺寸的不斷減小,晶元的集成度越來越高,同時體積也越來越小,對材料的性能要求也在不斷提升,這種晶元的性能突破將迫使新材料和新器件的不斷涌現,也必將極大地提升集成晶元的技術水平,當下人們普遍認為鐵電存儲器將是在DRAM之後的下一代半導體存儲器件。
3.系統集成晶元
中國晶元發展趨勢分析,系統集成晶元也叫SOC,該技術得到了國內外專家的大力支持,並且很多研究機構已經開始著手研究SOC技術的應用項目。SOC技術將微處理器、模擬IP核、數字IP核以及片外存儲器控制介面等功能集於一身,使得電路系統設計兼具穩定性和低功耗的特點,解決了很多傳統集成電路中面臨的主要問題,在未來必將引發一場以晶元為特色的電子信息產業化革命。
2. 什麼是半導體產業
全球半導體產業向亞太轉移,我國半導體產業融入全球產業鏈
全球半導體市場規模06年達到247.7億美元。主要應用領域包括計算機、消費電子、通信等。在電子製造業轉移和成本差異等因素的作用下,全球半導體產業向亞太地區轉移趨勢明顯。我國內地半導體產業發展滯後於先進國家,內地企業多位於全球產業鏈的中下游環節。我國半導體產業成為全球產業鏈的組成部分,產量和產值提高迅速,但是產品技術含量和附加值偏低。
2007年半導體產業大幅波動,長遠發展前景良好
半導體產業的硅周期難以消除。2007年上半年,在內存價格上升等因素作用下,全球半導體市場增速明顯下滑。至2007年下半年,由於多餘庫存的降低、資本支出的控制,半導體市場開始回升。預計2008年,半導體產業增速恢復到一個較高的水平。長遠來看,支撐半導體產業發展的下游應用領域仍然處在平穩發展階段,半導體產業的技術更新也不曾停滯。產品更新與需求形成互動,推動半導體產業持續增長。
我國半導體市場規模增速遠快於全球市場
我國半導體市場既受全球市場的影響,也具有自身的運行特點。
我國半導體應用產業中,PC等傳統領域仍保持平穩增長,消費電子、數字電視、汽車電子、醫療電子等領域處於快速成長期,3G通信等領域處於成長前期。我國集成電路市場規模增速遠快於全球市場,是全球市場增長的重要拉動元素。2006年,我國集成電路市場已經成為全球最大市場。
我國半導體產業規模迅速擴大,產業結構逐步優化
我國半導體產業規模同樣快速提高。在封裝測試業保持高速增長的同時,設計和製造業的比例逐步提高,產業結構得到優化。在相關管理部門、科研機構和企業的共同努力下,我國系統地開展了標准制定和專利申請工作,有效地保障本土企業從設計、製造等中上游產業鏈環節分享內地快速增長的電子設備市場。
分立器件、半導體材料行業是我國半導體產業的重要組成部分
集成電路是半導體產業的最大組成部分。分立器件、半導體材料和封裝材料也是半導體產業的重要組成部分。我國內地分立器件和半導體材料市場和產業也處於快速增長之中。
上市公司
我國內地半導體產業上市公司面對諸多挑戰。技術升級和產品更新是企業生存發展的前提。半導體材料生產企業有較強的定價能力,在保持產品換代的前提下,有較大的成長空間;封裝測試公司整體狀況較好;分立器件企業發展不均。
全球半導體產業簡況
根據WSTS統計,2006年全球半導體市場銷售額達2477億美元,比2005年增長8.9%;產量為5192億顆,比2005年增長14.0%;ASP為0.477美元,比2005年下降4.5%。
從全球范圍來看,包括計算機(Computer)、通信(Communication)、消費電子(ConsumerElectronics)在內的3C產業是半導體產品的最大應用領域,其後是汽車電子和工業控制等領域。
美、日、歐、韓以及中國台灣是目前半導體產業領先的國家和地區。2006年世界前25位的半導體公司全部位於美國、日本、歐洲、韓國。2005年,美國和日本分別佔有48%和23%的市場份額,合計達71%。韓國和台灣的半導體產業進步很快。韓國三星已經位列全球第二;台積電(TSMC)的收入在2007年上半年有了很大的提高,排名快速升至第6,成為2007年上半年進入前20名的唯一一家台灣公司,這從一個側面反映了台灣代工業非常發達。
中國市場簡況
中國已經成為全球第一大半導體市場,並且保持較高的增長速度。2006年,中國半導體市場規模突破5800億,其中集成電路市場達4863億美元,比2005年增長27.8%,遠高於全球市場8.9%的增速。我國市場已經達到全球市場份額的四分之一強。
在市場增長的同時,我國半導體產業成長迅速。以集成電路產業為例,2006年國內生產集成電路355.6億塊,同比增長36.2%。實現收入1006.3億元,同比增長43.3%。我國半導體產業規模佔世界比重還比較低,但遠高於全球總體水平的增長率讓我們看到了希望。
中國集成電路的應用領域與國際市場有類似之處。2006年,3C(計算機、通信、消費電子)佔了全部應用市場的88.5%,高於全球比例。而汽車電子1.3%的比例,比起2005年的1.1%有所提高,仍明顯低於全球市場的8.0%。與此相對應的是,我國汽車市場銷量呈增長態勢,汽車電子國產化比例逐步提高。這說明,在汽車電子等領域,我國集成電路應用仍有較大成長空間。
我國在國際半導體產業中所處地位
我國半導體市場進口率高,超過80%的半導體器件是進口的。國內半導體產業收入遠小於國內市場規模。
2006年國內IC市場規模達5800億,而同期國內IC產業收入是1006.3億。
我國有多個電子信息產品產量已經位居全球第一,包括台式機、筆記本電腦、手機、數碼相機、電視機、DVD、MP3等。中國已超過美國成為世界上最大的集成電路產品應用國。但目前國內企業只能滿足不到20%的集成電路產品需求,其他依賴進口。
中國大陸市場的半導體產品前十名的都是跨國公司。這十家公司平均21%的收入來自中國市場。這與中國市場佔全球市場規模的比例基本吻合。2006年這十家公司在中國的收入總和佔到中國大陸半導體市場規模的34.51%。上述兩組數字從另一個側面反映出跨國公司佔有國內較高市場份額。國內半導體市場對進口產品依賴性高。
雖然我國半導體進口量非常大,但出口比例也非常高。2005年國內半導體產品有64%出口。這種現象被稱為「大進大出」,主要是由我國產業鏈特點造成的。
總的來看,我國IC進口遠遠超過出口。據海關統計,2006年我國集成電路和微電子組件進口額為1035億美元,出口額為200億美元,逆差巨大。
由於我國具有勞動力競爭優勢,國際半導體企業把技術含量相對較低、勞動密集型的產業鏈環節向我國轉移。我國半導體產業逐漸成為國際產業鏈的一環。產業鏈調整和轉移的結果是,我國半導體產業在低技術、勞動密集型和低附加值的環節得到了優先發展。2006年,我國IC設計、製造和封裝測試業所佔的比重分別是18.5%、30.7%和50.8%。一般認為比較合理的比例是3:4:3。封裝測試在我國先行一步,發展最快,規模也最大,是全球半導體產業向中國轉移比較充分的環節。而處於上游的IC設計成為最薄弱的環節。晶元製造業介於前兩者之間,目前跨國公司已經開始把晶元製造逐步向我國轉移,中芯國際等國內企業發展也比較快。
這樣的產業結構特點說明,國內的半導體企業多數並未直接面對半導體產品的用戶—電子設備製造商和工業、軍事設備製造商,甚至多數也沒有直接分享國內市場。更多的是充當國際半導體產業鏈的一個中間環節,間接服務於國際國內電子設備市場。這種結構,利潤水平偏低,定價能力不強,客戶結構對於企業業績影響較大。究其原因,還是國內技術水平低,高端核心晶元、關鍵設備、材料、IP等基本依賴進口,相關標准和專利受制於人。國內企業發展也不夠成熟,規模偏小,設計、製造、應用三個環節脫節。
與產業鏈地位相對應,我國大陸的企業多為Foundry(代工)企業,這與台灣的產業特點相類似。國際上大的半導體跨國公司多為IDM形式。
2007全球半導體市場波動,未來增長前景良好
半導體產業長期具有行業波動性
硅周期性依然將長期存在。這是由半導體產業所處的位置決定的。半導體產業本身具有較長的產業鏈環節。
同時,半導體產業本身是電子設備大產業鏈的一個中間環節。下游需求和價格變動等外在擾動因素、產業技術升級等內在擾動因素必然在整個產業鏈產生傳導作用。傳導過程存在延時,從而導致半導體公司的反應滯後。半導體產業只有提高自身的下游需求預見性,及早對價格、需求和庫存等變動做出預測,從而盡量減小波動的幅度。但是,半導體產業的波動性將長期存在。
2006年全球手機銷售量增加21%
2006年全球手機銷售量為9.908億部,同比增長21%,其中,2006年四季度售出2.84億部,佔全年28.5%。
Gartner預測2007年手機銷量為12億部,比2006年增加2億部。手機市場增長平穩。手機作為個人移 動終端,除了通信和已經得到初步普及的音樂播放功能外,將集成越來越多的功能,包括GPS、手機電視等等。3G的逐漸部署也極大促進手機市場的增長。手機用晶元包括信號處理、內存和電源管理等。圖9反映了手機用內存需求的增加情況。
2006至2011年全球數字電視機市場將增長一倍
iSuppli預測,從2006年至2011年全球數字電視機半導體市場將增長一倍,從71億美元增至142億美元。
數字電視機的晶元應用包括輸入/輸出電路、驅動電路、電源管理等方面。帶動數字電視機增長的因素有多種,包括平板電視價格下降,新一代DVD播放機普及,高清電視推廣等。此外,許多國家的政府都宣布了從模擬電視切換到數字電視廣播系統的計劃。例如,2009年2月17日,全美模擬電視將停播,全部切換為數字電視廣播。
中國內地半導體產業的「生態」環境
中國大陸半導體產業作為國際產業鏈的一個環節,企業形態以代工型企業(foundry)為主,產業結構偏重封裝測試環節,半導體製造快速發展,未來我國半導體產業與國際產業大環境的聯系將愈發密切。
總的來看,國內企業規模和市場份額相對較小,產品單一,企業發展和技術水平還不夠成熟穩定,行業處於成長期。下游通信、消費電子、汽車電子等產業同樣是正在上升的市場,發展程度低於國際先進水平,發展速度快於國際平均水平。各種因素共同作用,使得我國半導體產業發展並非完全與國際同步,具備自身的產業「生態環境」,具有不同的發展特點。
2007年上半年,雖然全球市場增速只有2%,但我國內地依然保持了較高的增長速度。上半年中國集成電路總產量同比增長15.2%,達到192.74億塊。共實現銷售收入總額607.22億元,同比增長33.2%。收入增長與2006上半年的48%相比有所回落,部分是受國際市場的影響,但相當大的程度還是國內產業收入基數增大等因素及內在發展規律所致。
我國半導體市場和產業規模增長遠快於全球整體增速
受益於國際電子製造業向我國內地轉移,以及國內計算機、通信、電子消費等需求的拉動,我國內地半導體市場規模的增長遠快於全球市場的增長速度,已經成為全球半導體市場增長的重要推動區域。
作為半導體產業的重要組成部分,國內集成電路產業規模也是全球增長最快的。上世紀90年代初,我國IC產業規模僅有10億元,至2000年突破百億元,用了近10年時間;而從2000年的百億元增至2006年的千億元,只用了6年時間。今年年底,中國集成電路產業收入總額有望超過全球8%,提前實現我國「十一五」規劃提出的「到2010年國內集成電路產業規模佔全球8%份額」的目標。
我國半導體應用產業處在高速發展階段
PC、手機等傳統領域發展依然平穩,同時多媒體播放GPS和手機電視為手機等移 動終端帶來了新的增長點。
我國數字電視、3G、汽車電子、醫療電子等領域發展進程有別於國際水平,未來幾年內將進入高速發展階段,有力促進國內半導體需求。
搶占標准制高點,充分利用國內市場資源
其實,從目前的角度來看,我國市場規模的快速增長,國內企業在某種程度的程度還不是直接受益者。這是由國內半導體產業在國際產業鏈中所處的位置所決定的。這一情況在逐步改善,其中最重要的一點,就是我國在標准和專利方面取得突破。
國內的管理部門、專家團隊、科研機構和企業已經具有了產業發展的規劃能力和前瞻性。在國內相關發展規劃的指導下,產業管理部門、科研機構和企業的共同努力,促使3G通信標准TD-SCDMA、數字音視頻編解碼標准AVS標准、數字電視地面傳輸國家標准DTMB等系列國內標准出台;手機電視標准雖然尚未明確,但CMMB等國內標准已經打下了良好的基礎。這些國有標准雖然未必使國內公司獨享這些領域的半導體設計和製造市場,但是標準的制定主要是依靠國內科研機構和企業。在標准制定的過程之中,這些科研機構和企業已經系統地實現了相關技術,研發出了驗證產品,取得先入優勢。標准制定的同時,國內科研機構已經開展專利池的建設。這樣,國內半導體產業就具備了分享這些領域的國內市場的有利條件。我們有理由相信,國內數字電視、消費電子等產業進一步發展,已經對國內半導體產業等上游產業具有了昔日不可比擬的帶動能力,本土半導體公司可以更加直接的「觸摸」到國內半導體應用產業了。
產業鏈結構緩慢向上游遷移
自有標准體系的建立,使國內半導體產業的發展具備了一定的優勢。身處有利的「生態環境」內,我國半導體產業發展前景良好。目前,我國半導體產業結構已經在逐漸發生變化。2002年,中國IC設計、製造和封裝測試業所佔的比重分別為8.1%、17.6%、和74.3%,2006年,這一數字變為18.5%、30.7%和50.8%。設計、製造、封裝測試三業並舉,我國半導體產業才能產生更好的協同作用,國際公認的合理比例是3:4:3。我國半導體產業比例的改變,說明我國集成電路產業在向中上游延伸,但距離理想的比例還有差距。設計和製造業需要更快的提高。
晶元設計水平和收入逐步提高
從集成電路產業鏈的角度來看,只有掌握了設計,使產業鏈結構趨於合理,才能掌握我國IC產業的主動權,才能進入IC產業的高附加值領域。近年來,我國集成電路的設計水平不斷提高。20%的設計企業能夠進行0.18微米、100萬門的IC設計,最高設計水平已達90納米、5000萬門。
雖然我國半導體產業很多沒有直接分享國內3G、消費電子等領域的高成長。但是,這些領域確實對我國IC設計業的發展提供了良好的發展契機。例如,鼎芯承擔了中國3G「TD-SCDMA產業化」國家專項,並在2006年成為中國TD產業聯盟第一家射頻成員;展訊通信(上海)有限公司是一家致力於手機晶元研發的半導體企業,2006年的銷售額達3.32億元。內地排名第一的晶元設計企業是珠海炬力集成電路設計有限公司(晶門科技總部位於香港),MP3晶元產品做的比較成功,去年的銷售額達到了13.46億美元。中星微電子和展訊通信公司先後獲得國家科技最高獎—國家科技進步一等獎。
晶元生產線快速增長
我國新建IC晶元生產線增長很快。從2006年至今增加了10條線,平均每年增加6條。已經達到最高90納米、主流技術0.18微米的技術水平。12英寸和8英寸晶元生產線產能在國內晶圓總產能中所佔的比重則已經超過60%。跨國企業加快了把晶元製造環節向國內轉移的速度,Intel也將在大連投資25億興建一座晶元生產廠。
建成投產後形成月產12英寸、90納米集成電路晶元52000片的生產能力,主要產品為CPU晶元組。目前我國大尺寸線比例仍然偏小,生產線的總數佔全世界的比例也還小於10%。「十一五」期間我國IC生產線有望保持快速增加。
3. 半導體市場前景分析
中國大陸半導體(積體電路)產業優惠政策法律分析
富蘭德林事業群
法律四部主管/中國執業律師 丁德應
一、中國大陸半導體產業發展現狀
(一)高速發展的中國大陸半導體產業
中國大陸由於PC、手機及數位消費電子等整機產品的製造向中國大陸地區轉移,帶動了上游晶片市場需求的增加,半導體市場規模首次突破人民幣2000億元,總銷售額達到人民幣2074.1億元,增長率高達41%。其中,PC首次成為中國大陸半導體市場最大的應用領域,對高階晶片的需求量也大幅增長。
從2001年開始,全球半導體業的平均資本支出每年萎縮了30%,而中國大陸半導體業的資本支出年增長率卻高達50%。目前中國大陸地區有中芯國際、上海先進、華虹NEC、和艦和宏力五個主要晶圓代工廠,光是8英寸晶圓廠就達8個,總月產能達到15.5萬片,較2003年單月的8.4萬片大幅增長83%。
在未來幾年,受到中國大陸經濟高速增長的拉動、政策的扶持、2008北京奧運會以及2010上海世博會等眾多因素的影響,中國大陸半導體需求將持續高速增長,預計2004年中國大陸半導體市場銷售額將達到人民幣2800億元,到2008年市場規模將達到人民幣6000億元以上。
(二)不斷追趕高端技術
雖然中國大陸的半導體製造製程整體上落後於台灣,但由於近年來的迅猛發展,中芯國際、宏力、蘇州和艦等晶圓代工廠陸續進入了0.18mm製程的量產階段,中國大陸各主要晶圓代工廠都有計劃在今年年底前導入0.13mm的製程。而且,為了能與晶圓代工業巨頭台積電、聯電相抗衡,中國大陸晶圓代工報價普遍低於台灣,正不斷蠶食台、聯兩家的市場份額。
從2004起,中國大陸前4大晶圓代工廠相繼導入0.18mm製程,直到產品的量產,相關的製程技術已經達到了成熟階段,且中國大陸晶圓代工廠在技術上也在快速追趕台灣晶圓廠。
對於半導體設計業,整機生產的下遊客戶大多集中在中國大陸地區,中國大陸晶圓廠又有能力提供越來越先進的製程,部分台灣半導體設計業者甚至計畫將主力產品轉移至中國大陸代工廠。
因此,在市場規模迅速擴大的同時,中國大陸半導體的製造工藝與國際先進水準將日益縮小,0.13mm的晶片製造將規模化,0.09mm的工藝也將走向市場,系統晶片(SoC)將成為發展的主 要方向。
(三)中國大陸半導體產業的地區分布
從地域上來看,中國大陸半導體產業主要分布在長江三角洲、京津環渤海灣和珠江三角洲地區,三個地區的產值佔全中國大陸半導體行業產值的95%以上。
在三大經濟區域中,由於長三角地區近幾年的高速發展,成為中國大陸地區半導體最主要的開發和生產基地,在中國大陸半導體產業中佔有重要地位。在半導體設計方面,長三角地區的半導體設計業銷售額佔中國大陸地區的45%左右。晶圓製造約佔中國大陸的70%左右,2003年近80%的封裝測試企業和近65%的封裝測試量都集中在長三角地區。目前,長三角地區已形成半導體設計、製造、封裝、測試及設備、材料等配套齊全、較為完整的半導體產業鏈。在半導體產業鏈下游整機部分,長三角地區的筆記型電腦產量佔中國大陸的80%,DVD產量佔50%以上。目前,長三角地區已經有上海張江開發區、蘇州工業園、無錫等眾多電子園區和上海、杭州、無錫三個半導體設計產業化基地,還有常州高新技術開發區和常州新區。中芯國際、宏力半導體、先進和華虹NEC都落戶在上海張江開發區;台積電落戶在了上海松江開發區;和艦落戶在蘇州工業園。這些晶圓生產企業帶動了集群效應,初步形成了長三角地區半導體設計、晶圓製造、封測、設備材料企業以及下游整機生產完整的半導體產業鏈。
在京津環渤海區域,有北京、天津、山東、河北、遼寧行政區域,其中北京、天津的資訊產業在中國大陸佔有重要地位。中國大陸第一座12英寸晶圓廠,中芯國際四廠正是設在北京經濟技術開發區;現被中芯國際收購的原摩托羅拉8英寸晶圓廠位於天津。晶圓生產業是高耗水工業,而且對水質和空氣的品質要求非常高。但北京地區面臨缺水的環境以及沙塵暴氣候,這無疑增加晶圓生產的成本,不過,北京在發展環境、市場條件、技術基礎和人才資源上的優勢大大抵消了環境上的影響。
珠江三角洲地區是中國大陸地區電子產品的重要製造地,集中了大量的下游整機製造商,對進口半導體產品的依賴程度極高,消費量佔中國大陸進口總量的80%以上。
二、中國大陸半導體的優惠扶持政策
半導體業在中國大陸的迅速發展,盡管有中國大陸中央政府和地方政府在土地、環境、手續等方面的大力支持,也有中國大陸市場的巨大需求和運作成本較低等因素的存在,但不可否認的是,目前中國大陸政府所頒布的各種優惠政策和給予的各種優惠措施也同樣功不可沒。其中,首當其沖的是國務院在2000年頒布和實施的《鼓勵軟體產業和積體電路產業發展的若干政策》,即業界所稱的「18號文件」。其次,中國大陸財政部、稅務總局、海關總署和各地政府還分別在自己的責任范圍內為鼓勵半導體行業制定了優惠政策的實施細則,如關於《鼓勵軟體產業和積體電路產業發展有關稅收政策問題》的通知(財稅[2000]25號)、《財政部、國家稅務總局關於進一步鼓勵軟體產業和積體電路產業發展稅收政策的通知》(財稅〔2002〕70號)、上海市《關於本市鼓勵軟體產業和積體電路產業發展的若干政策規定》、《江蘇省鼓勵軟體產業和積體電路產業發展的若干政策》等。這些政策的頒布為半導體產業鏈上游的半導體設計、中游的晶圓生產、下游的封裝測試環節給予了優惠,進一步推動半導體產業在中國大陸的發展。
(一)在半導體設計企業方面
「18號檔」將半導體設計企業視同於軟體企業,享受與軟體企業同等優惠。而依據18號檔和其他相關檔可知,半導體企業優惠政策主要為:
1、 所得稅方面,可以享受自獲利年度開始「兩免三減半」的優惠政策;
2、 增值稅方面,在銷售自行設計的半導體產品時,可以享受「2010年前按17%的法定稅率徵收增值稅,對實際稅負超過3%的部分即徵即退」的優惠;
3、 對經認定的半導體設計企業引進半導體技術和成套生產設備,單項進口的半導體專用設備與儀器,除國務院規定的《外商投資專案不予免稅的進口商品目錄》和《國內投資項目不予免稅的進口商品目錄》所列商品外,免徵關稅和進口環節增值稅;
4、 半導體設計企業設計的半導體,如在境內確實無法生產,可在國外生產晶片,其加工合同(包括規格、數量)經行業主管部門認定後,進口時按優惠暫定稅率徵收關稅;
5、 半導體設計企業的工資和培訓費用,可按實際發生額在計算應納稅所得額時扣除;
6、 企業對購進半導體產品,凡購置成本達到固定資產標准或構成無形資產,可以按照固定資產或無形資產進行核算。投資額在3000萬美元以上的外商投資企業,報由稅務總局批准;投資額在3000萬美元以下的外商投資企業,經主管稅務機關核准,其折舊或攤銷年限可以適當縮短,最短可為2年。
不過要提醒注意的是,要享受這樣的優惠條件,半導體設計企業應按照《積體電路設計企業及產品認定管理辦法》之規定獲得資訊產業部和稅務總局的認定,並取得《積體電路設計企業認定證書》和《積體電路產品認定證書》。
(二)關於半導體生產企業方面
按照目前半導體企業的分類可知,除了半導體設計企業之外,其他製造、封裝測試等企業都屬於半導體生產企業,根據「18號檔」和其他相關規定可知,目前中國大陸對於半導體生產企業的優惠政策主要有:
1、所得稅方面:作為生產性企業,可以依照《外商投資企業和外國企業所得稅法》等規定,享受「兩免三減半」之稅收優惠。
2、增值稅方面:
半導體生產企業銷售自己生產的半導體產品(含單晶矽片),2010年前按17%法定稅率徵收增值稅,對實際稅負超過3%的部分即徵即退;對投資超過80億人民幣或半導體線寬小於0.25微米的,企業所得稅為「五免五減半」。
3、對經認定的半導體生產企業引進半導體技術和成套生產設備,單項進口的半導體專用設備與儀器,除國務院規定的《外商投資專案不予免稅的進口商品目錄》和《國內投資項目不予免稅的進口商品目錄》所列商品外,免徵關稅和進口環節增值稅。
4、投資額超過80億元人民幣或半導體線寬小於0.25微米的半導體生產企業,除了享受所得稅「五免五減半」之外,對於其進口自用生產性原材料、消耗品,免徵關稅和進口環節增值稅。
5、對於半導體生產企業的生產性設備,投資額在3000萬美元以上的外商投資企業,報由稅務總局批准;投資額在3000萬美元以下的外商投資企業,經主管稅務機關核准,其折舊年限可以適當縮短,最短可為3年。
此外,半導體產業相對集中的地方政府也制定了配套的優惠政策,如上海市頒布了《上海市鼓勵軟體產業和積體電路產業發展的若干政策》,其中:(1)對新建的半導體製造及相關專案,經有關科技和稅務部門認定,屬於技術先進、市場前景良好,可以享受鼓勵外商對能源、交通投資的稅收優惠政策,即「五免五減半」;(2)將新建的半導體晶片生產線專案,列為市政府重大工程項目,對其建設期內固定資產投資貸款人民幣部分,提供1個百分點的貸款貼息;(3)對新建的半導體晶片生產項目,自認定之日起3年內,免收購置生產經營用房的交易手續費和產權登記費;免收該專案所需的自來水增容費、煤氣增容費和供配電貼費;(4)境外企業向中國大陸企業轉讓半導體設計技術等使用權或所有權,其中技術先進,經同級財稅部門核准,免徵預提所得稅。
其實,正是在這些優惠政策的扶持下,中國大陸的半導體從2000年開始突飛猛進,形成了目前中國大陸半導體產業鏈的布局。
三、中國大陸半導體產業的政策尷尬
在政府的中國大陸扶持和種種優惠政策下,境外資金紛紛投資中國大陸半導體業,但後來發現實際並沒有想像的那麼特別美好,主要原因在於「18號檔」與中國大陸出口導向型的稅收政策、嚴格的外匯管理制度之間存在一定的落差,這種政策上的弊病,已使半導體產業鏈感到尷尬。
(一)增值稅退稅政策的難以享受
在增值稅退稅上,相關文件規定了實際稅負超過3%的部分退稅,但是對於半導體產業鏈中關鍵的封裝測試企業來說並沒有享受到什麼優惠,因為封測企業接受委託加工半導體產品不能視為銷售自產產品,故雖然其實際稅負高於3%,卻不能享受增值稅退稅的優惠。此外,由於在成品出口的情況下,採用進料加工和來料加工裝配的貿易方式進口的原材料或原器件不徵收進口環節增值稅,對出口成品增值稅允許退稅。在這樣的條件下,封測企業將產品出口才可以享受增值稅退稅,然後下游的整機生產企業也用同樣的方式先進口再出口。
對於晶圓生產企業也同樣如此,生產型企業出口可以退還17%的增值稅(2004年初降為13%),而內銷則只退還超過實際稅負3%的部分,企業都盡可能將產品出口到境外以獲得退稅的優惠,再由下游封測企業當作原材料進口。這樣即使一牆之隔的晶圓廠與封測企業,產品在產業鏈中流轉都要先出口再進口,無疑增加了企業的成本。
此外,因為企業的實際稅負要超過3%的部分才能即徵即退,所以,從財稅角度計算,如果企業要享受實際稅負超過3%而享受增值稅退還的優惠,至少要把70-80%的產品內銷,且毛利率要在30%以上,而從目前情況來看,考慮到出口退稅的優惠、毛利率、境外客戶及外匯方面等原因,很少企業能夠達到如此高的內銷比例和毛利率。
(二)「原材料和成品關稅不同」的政策影響了中國半導體企業的國際競爭力。目前半導體優惠政策雖對於半導體技術和成套生產設備、單項進口的半導體專用設備與儀器免徵關稅和增值稅,但對於某些必須進口的材料和設備如用於製造半導體的專用材料(塑膠、導電橡膠等)進口時還要徵收近10%的平均關稅,這其實大大加大了半導體行業的生產成本,與此同時,中國大陸政府對於進口半導體產品的進口關稅稅率卻為零,這使得很多企業從成本角度考慮出發,寧願直接從國外進口產品,也不願意從中國大陸半導體加工廠購買產品,而且半導體設計公司委託中國大陸國內的封裝測試廠加工產品時,因有些中國大陸廠商受到「原材料和成品關稅不同」的政策影響,也不願意購買相應的技術設備進行加工,這其實客觀上削弱了中國大陸半導體企業在國際上的競爭力,且不利於外國企業對中國大陸進行投資。
(三)外匯平衡政策也導致很多企業無法內銷。以封裝企業為例,因為目前中國大陸對於半導體企業沒有專門的外匯政策,這樣使得企業如果將半導體產品直接出售給本地整機製造商,則只能以人民幣結算,而封裝企業所用的原材料大部分需要進口的,這需要大筆外匯。同時,半導體作為國際性產業,封裝企業一般由下訂單的國外半導體設計企業支付加工費,而不是整機製造商,但中國大陸實行「誰出口誰收匯」的外匯管理體制,賣給本地企業的產品被視為內銷,封裝企業無法收匯。
(四)「18號文件」規定,投資額超過80億元人民幣或半導體線寬小於0.25微米的半導體生產企業進口自用生產原材料、消耗品,免徵關稅和進口環節增值稅,而中國大陸本地企業采購本地材料和設備要繳納17%的增值稅,這樣促使很多企業不願意從中國大陸本地企業購買材料和設備,從而使得材料和設備受制於境外市場,且材料和設備如果都靠進口,其實也使得外國投資者因為無法購買本地相對便宜的材料,而造成成本增加,從而影響了投資的興趣,也限制了作為支撐中國大陸半導體發展的本地半導體材料企業的發展。
(五)從2004年1月1日開始,包括半導體產品在內的多種產品出口退稅比例由原來的17%降到13%,這無疑又加重了半導體企業的稅負。
另外,目前中美之間有關半導體增值稅退稅的爭端,即美國認為中國大陸對於進口半導體產品要徵17%的增值稅,而對於本地企業銷售半導體產品卻能享受實際稅負超過3%部分的退稅,這是一種歧視性的稅收政策,與中國大陸加入世界貿易組織時所做出的「國民待遇」 承諾不相符合,並為此向WTO提出指控。盡管目前沒有最終定論,但不可否認的是,這也間接影響了目前中國半導體企業優惠政策穩定性。
半導體市場發展前景 亞洲推動平穩增長
參加Semicon新加坡2006年研討會的分析家和行業代表認為,全球半導體工業有望盼來一段時期的
穩定增長,其中很大一部分受到亞洲新興經濟的推動。
國際半導體設備及材料(SEMI)總裁兼CEO Stanley Myers表示,SEMI預計市場總體上今年將上升
10%,主要受到諸如手機和數字音頻播放機等消費產品需求不斷增長的推動。全球IC設備市場今年將
大約增長31.2億美元達到361.2億美元。晶元材料的市場預計將由313.8億美元增至345.1億美元。其
中,亞洲將成為領頭羊,增長超過全球平均水平。而中國的半導體材料和設備市場預計增長率將超
過20%。
Gartner公司半導體研究副總裁Philip Koh稱,該公司預計半導體行業未來5年內的年復合增長率為
7.9%,對3G手機和存儲設備的需求激增,將彌補PC市場「飽和」所帶來的損失。作為全球最主要的
晶元市場,中國市場將持續增長,到2010年市場份額將接近60%。而更多發達市場如台灣和新加坡的
發展將保持相對「平緩」。除了將製造業務轉向中國之外,越來越多的台灣大公司也將研發活動轉
向大陸。
盡管「中國的IC和系統設計行業仍然存在問題,」但Gartner預計中國的電子製造商仍將繼續積極
在中國投資,同時也更加努力開發自有的標准和技術。
STATS ChipPAC首席戰略官Scott Jewler指出,已經連續第5年增長的全球半導體行業,似乎已經擺
脫以往繁榮-低谷循環往復的陰影。在技術和財務上均可以投資得起300mm晶圓廠或前沿封裝解決方
案的公司越來越少,這將使產能被「重復預訂」的情況減少,同時「非理性資本投資也減少」。但
Jewler也表示,更先進的消費設備和技術整合也將帶來挑戰。
「企業的選擇很少,只能互相合作,因為很少有公司擁有製造如手機等設備所需要的知識產權。此
外,集成設計製造(IDM)工藝日益復雜。」他說。規模較小,專注於利基市場的企業,在資本密集市
場上的生存能力也受到質疑,而在歷史上他們卻是許多行業創新的源泉。
IP版權保護和行業標准將成為「未來3到5年內的較突出問題,」尤其是隨著製造向中國等地區轉移
。到2015年,隨著小於45nm的IC出現及採用諸如納米線和碳納米管等材料,納米技術將主宰半導體
市場。他還預測將出現450mm晶圓廠,盡管這種廠房耗資高達100億美元。同時,他還建議要留意中
國背景的IDM,一些中國IDM已經「在前沿參與競爭,」中國也正試圖用「本土的設計來替換進口芯
片。」
4. 半導體晶元是一種什麼新型材料,它有哪些作用
半導體的材料:常溫下導電性能介於導體(conctor)與絕緣體(insulator)之間的材料。半導體按化學成分可分為元素半導體和化合物半導體兩大類。鍺和硅是最常用的元素半導體;化合物半導體包括第Ⅲ和第Ⅴ族化合物(砷化鎵、磷化鎵等)、第Ⅱ和第Ⅵ族化合物( 硫化鎘、硫化鋅等)、氧化物(錳、鉻、鐵、銅的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物組成的固溶體(鎵鋁砷、鎵砷磷等)。除上述晶態半導體外,還有非晶態的玻璃半導體、有機半導體等。
半導體的作用:
(1)集成電路 它是半導體技術發展中最活躍的一個領域,已發展到大規模集成的階段。在幾平方毫米的矽片上能製作幾萬只晶體管,可在一片矽片上製成一台微信息處理器,或完成其它較復雜的電路功能。集成電路的發展方向是實現更高的集成度和微功耗,並使信息處理速度達到微微秒級。(2)微波器件半導體微波器件包括接收、控制和發射器件等。毫米波段以下的接收器件已廣泛使用。在厘米波段,發射器件的功率已達到數瓦,人們正在通過研製新器件、發展新技術來獲得更大的輸出功率。
(3)光電子器件 半導體發光、攝象器件和激光器件的發展使光電子器件成為一個重要的領域。它們的應用范圍主要是:光通信、數碼顯示、圖象接收、光集成等。
半導體的特點:
(1)電阻率的變化受雜質含量的影響極大。例如,硅中只含有億分之一的硼,電阻率就會下降到原來的千分之一。如果所含雜質的類型不同,導電類型也不同。由此可見,半導體的導電性與所含的微量雜質有著非常密切的關系。(2)電阻率受外界條件(如熱、光等)的影響很大。溫度升高或受光照射時均可使電阻率迅速下降。一些特殊的半導體在電場或磁場的作用下,電阻率也會發生改變。
5. 2019-2020年中國半導體行業市場現狀與發展前景分析報告
半導體是指一種導電性可受控制,范圍可從絕緣體至導體之間的材料。無論從科技或是經濟發展的角度來看,半導體的重要性都是非常巨大的。現在大部分電子產品中的核心單元都和半導體有著極為密切的關聯。
一、2019年全球半導體材料市場銷售額達521.2億美元
SEMI報告指出,2019年全球半導體材料市場銷售額為521.2億美元,小幅下降-1.1%。分區域來看,中國台灣、韓國、中國大陸、日本、北美、歐洲半導體銷售額分別為113.4億美元、88.3億美元、86.9億美元、77.0億美元、56.2億美元、38.9億美元,分別佔全球半導體材料市場份額的22%、17%、17%、15%、11%、17%。中國大陸是2019年各地區中唯一增長的半導體材料市場,銷售規模位居第三。
——以上數據來源及分析請參考於前瞻產業研究院《半導體矽片、外延片行業市場前景預測與投資戰略規劃分析報告》。
6. 半導體行業有發展前景嗎
半導體是指一種導電性可受控制,范圍可從絕緣體至導體之間的材料。無論從科技或是經濟發展的角度來看,半導體的重要性都是非常巨大的。現在大部分電子產品中的核心單元都和半導體有著極為密切的關聯。
一、2019年全球半導體材料市場銷售額達521.2億美元
SEMI報告指出,2019年全球半導體材料市場銷售額為521.2億美元,小幅下降-1.1%。分區域來看,中國台灣、韓國、中國大陸、日本、北美、歐洲半導體銷售額分別為113.4億美元、88.3億美元、86.9億美元、77.0億美元、56.2億美元、38.9億美元,分別佔全球半導體材料市場份額的22%、17%、17%、15%、11%、17%。中國大陸是2019年各地區中唯一增長的半導體材料市場,銷售規模位居第三。
——以上數據來源於前瞻產業研究院《半導體矽片、外延片行業市場前景預測與投資戰略規劃分析報告》。
7. 半導體的現狀及其發展趨勢
中國計算50年
——中國數字電子計算機的創業歷程及領路人
(2006-09-11 16:18:31)
■ 中國科學院院士、北京科技大學教授 高慶獅
編者按: 一轉眼,中國的計算機事業已經走過了50個春秋。在《計算機世界》紀念中國計算機事業發展50年的過程中,我們看到,在這50年裡,有太多激動人心的創舉出現,也有太多令人黯然的無奈穿過。
幾代大師為了中國計算機事業的發展鞠躬盡瘁,更多人為了中國計算機產業的前行奮發圖強。為此,我們特邀中國科學院院士、北京科技大學教授、中國科學院計算技術研究所終身研究員高慶獅撰寫此文,以紀念過往、慶祝成就,同時也警醒現狀、激勵未來。
50年風雨之後,為了尋求ICT的融合和計算領域的更大發展,中國正在積極醞釀更好的政策環境。2006年8月29日,全國信息產業科技創新會議在京召開。
自從1946年,世界上第一台數字電子計算機在美國誕生,與計算機最鄰近領域的數學和物理界的共和國泰斗、世界數學大師華羅庚教授和中國原子能事業的奠基人錢三強教授,十分關注這一新技術如何在國內發展。
中國誕生計算機
從1951年起,國內外和計算機領域相近的其他領域人才,尤其是從國外回來的教授、工程師和博士,不斷轉入到該行業中。他們當中的很多人,都在華羅庚領導的中科院數學所和錢三強領導的中科院物理所里,其中包括國際電路網路權威閔乃大教授、在美國公司有多年實踐經驗的范新弼博士、在丹麥公司有多年實踐經驗的吳幾康工程師,以及從英國留學回來的夏培肅博士和從美國留學回來的蔣士飛博士。
他們積極推動,把發展計算機列入12年發展規劃。
1956年3月,由閔乃大教授、胡世華教授、徐獻瑜教授、張效祥教授、吳幾康副研究員和北大的黨政人員組成代表團,參加了在莫斯科主辦的「計算技術發展道路」國際會議,到前蘇聯「取經」,為我國制定12年規劃的計算機部分做技術准備。當時的代表團主要成員後來都參加了12年規劃。此外,范新弼、夏培肅和蔣士飛也加入規劃制定中。在隨後制定的12年規劃中,確定了中國要研製計算機,並批准中國科學院成立計算技術、半導體、電子學及自動化等四個研究所。
計算技術研究所籌備處由科學院、總參三部、國防五院(七機部)、二機部十局(四機部)四個單位聯合成立,北京大學、清華大學也相應成立了計算數學專業和計算機專業。為了迅速培養計算機專業人才,這三個單位聯合舉辦了第一屆計算機和第一屆計算數學訓練班。計算數學訓練班的學生有幸聽到了剛剛歸國的錢學森教授和董鐵寶教授講課。錢學森教授在當時已經是國際控制論的權威專家,而董鐵寶教授在美國已經有過3~4年的編程經驗,也是當時國內惟一真正接觸過計算機的學者。當時我也是學生之一。
錢學森的數學功底的深度和廣度幾乎涵蓋了我們所學的數學的所有課程,而且運用自如,我們作為北大數學系學生,對此感到十分欽佩。同時,錢學森教授也幫助我們具體了解到,數學如何應用到實際物理世界中。
在前蘇聯專家的幫助下,由七機部張梓昌高級工程師領導研發的中國第一台數字電子計算機103機(定點32二進制位,每秒2500次)在中國科學院計算技術研究所誕生,並於1958年交付使用。參與研發的骨幹有董占球、王行剛等年輕人。隨後,由總參張效祥教授領導的中國第一台大型數字電子計算機104機(浮點40二進制位、每秒1萬次)在1959年也交付使用,骨幹有金怡濂,蘇東庄,劉錫剛,姚錫珊,周錫令等人。其中,磁心存儲器是計算所副研究員范新弼和七機部黃玉珩高級工程師領導完成的。在104機上建立的、由仲萃豪和董韞美領導的中國第一個自行設計的編譯系統,則在1961年試驗成功(Fortran型)。
國防是首要服務對象
在任何先進國家,計算機的發展首先都是為國防服務,應用於國家戰略部署上,中國也不例外。1958年,北京大學張世龍領導包括當時作為學生的王選在內的北大師生,與中國人民解放軍空軍合作,自行設計研製了數字電子計算機「北京一號」,並交付空軍使用。當時中國人民解放軍朱德總司令還親自到北京大學北閣「北京一號」機房參觀了該機器。隨後,張世龍帶領北大師生(包括王選和許卓群在內),立即投入北大自行設計的「紅旗」計算機研製工作,當時設定的目標比前蘇聯專家幫助研製的104機還高,並於1962年試算成功。但是由於搬遷和文革的干擾,搬遷後「紅旗」一直沒有能夠恢復和繼續工作。
與此同時,1958年,在哈爾濱軍事工程學院(國防科技大學前身)海軍系柳克俊的領導下,哈爾濱軍事工程學院和中國人民解放軍海軍合作,自行設計了「901」海軍計算機,並交付海軍使用。在海軍系康繼昌的領導下,哈爾濱軍事工程學院和中國人民解放軍空軍合作,自行設計的「東風113」空軍機載計算機也交付空軍使用。隨後,柳克俊領導的國產晶體管軍用的計算機,也在1961年交付海軍使用。
1958年~1962年期間,中國人民解放軍總參謀部也前後獨立研製成功了一些自行設計、全部國產化的計算機。
1964年,中科院計算技術研究所吳幾康、范新弼領導的自行設計119機(通用浮點44二進制位、每秒 5萬次)也交付使用,這是中國第一台自行設計的電子管大型通用計算機,也是當時世界上最快的電子管計算機。當時美國等發達國家已經轉入晶體管計算機領域,119機雖不能說明中國具有極高水平,但是仍然能表明,中國有能力實現「外國有的,中國要有;外國沒有的,中國也要有」這個偉大目標。
在119機上建立的,是董韞美領導的自行設計的編譯系統,該系統在1965年交付使用(Algol型),後來移植到109丙機上繼續起作用。
哈爾濱軍事工程學院計算機系慈雲桂教授領導的自行設計的晶體管計算機441B(浮點40二進制位、每秒8千次)在1964年研製成功,骨幹人員包括康鵬等人。1965年,441B機改進為計算速度每秒兩萬次。
與此同時,中科院計算技術研究所蔣士飛領導的自行設計的晶體管計算機109乙機(浮點32二進制位、每秒6萬次),也在1965年交付使用。為了發展「兩彈一星」工程,1967年,由中科院計算機所蔣士飛領導,自行設計專為兩彈一星服務的計算機109丙機,並交付使用,骨幹有沈亞城、梁吟藻等人。兩台109丙機分別安裝在二機部供核彈研究用和七機部供火箭研究用。109丙機的使用時間長達15年,被譽為「功勛計算機」,是中國第一台具有分時、中斷系統和管理程序的計算機,而且,中國第一個自行設計的管理程序就是在它上面建立的。
這些由中國科研人員自力更生、努力拚搏研製出的第一批計算機,代表了中國人掌握計算機的技術水平和成果,證明了中國有能力發展自己的全部國產化的計算機事業。
突破百萬到超越億計算
雖然我國自行設計研製了多種型號的計算機,但運算速度一直未能突破百萬次大關。1973年,北京大學(由張世龍培養的、包括許卓群和張興華等骨幹人員)與「738廠」(包括孫強南、陳華林等骨幹人員)聯合研製的集成電路計算機150(通用浮點48二進制位、每秒1百萬次)問世。這是我國擁有的第一台自行設計的百萬次集成電路計算機,也是中國第一台配有多道程序和自行設計操作系統的計算機。該操作系統由北京大學楊芙清教授領導研製,是國內第一個自行設計的操作系統。
1973年3月,在全國實際研製目標200~500萬次不能滿足中國飛行體設計的計算流體力學需要的情形下,時任國防科委副主任的錢學森,根據飛行體設計需要,要求中科院計算所在20世紀70年代研製一億次高性能巨型機,80年代完成十億次和百億次高性能巨型機,並且指出必須考慮並行計算道路。中科院計算所根據國防情報所和計算所情報室提供的國際上的公開資料,分析了1970年前後美國研製的高性能巨型機的優缺點之後,於1973年5月提出「全部器件國產化一億次高性能巨型機(20M低功耗ECL、電路-四條流水線)及其模型機(757向量計算機、10M ECL、電路-單條流水線)」的可行方案。由於文革中受到嚴重干擾,以及文革後「走馬燈」式良莠不齊的領導亂指揮,盡管在1979年,由亞城負責的20M低功耗ECL電路的集成電路晶元投片已經研發成功,但是最終「全部器件國產化一億次高性能巨型機」的研發,因為任務變化,最終擱淺。
表1和表2給出了代表中國掌握電子管、晶體管、集成電路計算機技術的發展時間表,水平主要是根據創新的「三性」中的先進性。需要說明的是,表中所列只是代表中國已掌握的計算機技術水平的計算機,其中,帶*的103、104、119、150、757,及銀河-1號巨型機和銀河-2模擬計算機等7台計算機,都被載入「記述對中華文明發展起促進作用的重要歷史事件」的中華世紀壇青銅甬道銘文中。
除了研製水平之外,產業、市場和應用的發展也同樣重要。在批量生產計算機上,電子工業部及其相關研究所(例如著名的15所)和工廠(例如著名的738廠)功不可沒。不僅上述中國早期計算機的研製和批量生產要依靠它們,而且它們也獨立設計和研製過一些成批生產的計算機(例如108系列、與清華大學合作的DJS-130等),尤其在人造衛星地面系統(例如320計算機及艦上718計算機)及其他軍工任務上,這些研究所和工廠都有過突出貢獻。研究所和工廠研究工作的重點,主要是在技術和工藝方面。他們的領軍人包括莫根生、陳立偉、曹啟章及一批骨幹人員,例如江學國等。現任中國工程院院士羅沛霖領導的仿IBM系列也起過歷史性作用,沈緒榜和李三立負責的有關衛星天上和地上計算機及其他任務用的計算機也做出了重要的貢獻。此外,七機部、清華大學及中科院各分院在發展計算技術方面還做出了許多貢獻,這里就不枚舉了。
中國自力更生全部國產化的半導體、集成電路計算機事業,和20世紀50~70年代林蘭英、王守武、王守覺和徐元森等教授領導的中科院半導體所、上海冶金所和109廠的研究及開發工作是分不開的。中科院半導體所和109廠都是從中國科學院物理所獨立出來的,中科院物理所對中國計算機事業的歷史貢獻功不可沒。
人才培養至關重要
發展計算機事業離不開人才培養,20世紀50~70年代,中科院計算技術研究所(及之後的中國科技大學)的夏培肅副研究員、北京大學和哈爾濱軍事工程學院,在組織教師和學生動手研製計算機、進行實踐、培養人才等方面,都取得了很好的成績。夏培肅領導組織教師和學生動手研製了107(定點32二進制位、每秒 250次)計算機,該計算機於1960年交付使用,並且還復制了兩台。盡管107計算機比103(1958年交付使用)、104計算機(1959年交付使用)速度低了10倍到40倍,但是對培養人才起了重要作用。
一個計算機系統是由多方面研究成果構成的。范新弼領導的磁心存儲器長期處於領先地位,其中主要的骨幹有伍福寧、王振山、徐正春、張傑、甘鴻,等等。王克本領導了中國第一個八層印刷電路版研究與設計小組。方光旦在磁頭、磁膠,張品賢在磁帶,顧爾旺在磁鼓等方面,都做出了出色的貢獻。實際上,大多計算機的研發都是集體成果,例如全國參加757計算機研發工作的人員,就有上千人。
我國第一個「計算機系統結構設計」小組於1957年在中科院計算所成立。20世紀50~70年代,它承擔了中科院計算所代表性的計算機(119、109乙、109丙、757、717等計算機)的系統結構設計任務。參與成員則根據當時前蘇聯計算機領軍人物、前蘇聯科學院列貝捷夫院士的建議,由年輕的數學專業畢業生組成。第一任小組負責人是國際網路權威人士閔乃大教授,第一個正式設計任務則是1958年5月國防部門的「導彈防禦系統計算機」系統結構設計。設計工作由北京大學張世龍和第二任小組負責人虞承宣,加上6名數學專業畢業的大學生組成,其中周巢塵、沈緒榜等3人後來分別由不同領域(軟體、航天、系統結構)、不同單位被選為中科院院士。
中國20世紀60年代編譯系統的帶頭人在當時都是年輕人,如中國人民解放軍總參謀部楊奇、中科院計算所董韞美和仲萃豪、南京大學徐家福、國防科技大學陳火旺等。中國20世紀60年代操作系統的帶頭人有北京大學楊芙清、南京大學大孫仲秀等,當時也都是年輕人。軟體正確性設計(容易推廣到硬體的正確性設計)是近20多年國際上關注的具有巨大經濟效益、社會效益和理論價值的重大問題。我國領軍人物何積豐院士、周巢塵院士如今已經是國際上知名的佼佼者。20世紀70年代,逐漸形成容錯和檢測理論和實踐的帶頭人是魏道政,而知識處理的帶頭人是陸汝鈐。
依賴進口弊端過大
20世紀70年代後期以後,中國研製的計算機,幾乎全部使用進口元器件、進口部件。
由於超大規模集成電路迅速發展,數千萬甚至上億個晶體管逐漸能夠集成在一個晶元上,20世紀80年代及其之後得到迅速發展的計算機,是普通個人使用的「微機」(PC機)及超強「微機」(後者可以組成伺服器或者並行處理的高性能計算機),而其他各式各樣的計算機(包括超級中小型計算機在內)由於性價比問題,無法和微機競爭,就自然逐步退出舞台了。國際上沒有及時調整戰略的計算機公司,例如CDC公司、王安公司等,紛紛倒閉。雖然如此,國內那一段過渡時期為了滿足用戶需求而研製的各種機型也曾有過較大貢獻,例如張修領導的KJ8920,在為用戶提供優質服務軟體方面就很突出。
中國最早意識到個人計算機發展趨勢而率先轉向研究「微機」,並且做出突出貢獻的帶頭人有倪光南、韓承德等。
國內高性能計算機,有慈雲桂、盧錫城、周興銘、楊學軍領導的銀河系列;張效祥、金怡濂、陳左寧領導的神州系列;李國傑、孫凝暉領導的曙光系列;祝明發領導的聯想深騰系列;以及周興銘領導的銀河-2數字模擬巨型機等。PC機有聯想系列、長城系列、方正系列、同方系列等,其學術代表性帶頭人是倪光南,產業代表性的領軍人是柳傳志。
計算機產業作為一個產業鏈,軟體發展依賴於整機和應用需求的發展;整機的發展依賴於晶元、部件及需求的發展;晶元的發展則依賴於「集成電路生產線大三角形」的發展。這里集成電路生產線大三角形是指集成電路生產線的三大部分,即大底座、中間層和頂層。大底座(價值十多億美元的集成電路製造工藝生產線)是從拉單晶硅到光刻-擴散-參雜,到最後封裝,相當於過去林蘭英、王守武、王守覺和徐元森等領導中科院半導體所、上海冶金所的研究工作。中間層是各種高速低功耗電路設計,相當於過去中科院計算所電路設計組蔣士飛、沈亞城等人的研究工作。20世紀70年代,沈亞城所進行的高速低功耗ECL電路設計,直到做成晶元,才可以算做完成。頂層則是硅編譯等等軟體工作,這部分工作過去是計算所使用小規模集成電路時把邏輯設計圖變成為工程布線圖的手工工作,加上半導體所製造小規模集成電路各種掩模版所需的手工工作。在超大規模集成電路的情況下,從復雜性、可靠性角度,手工是絕對不可能完成的,需要依靠硅編譯來自動完成。
在允許部分進口的環境下,一個產業鏈如果要求全部國產化,會造成一環落後引發產業鏈後續部分全部落後的情況;使用進口元器件、進口部件,使得各種類型整機可以在國際先進基礎上得到發展,進而軟體和應用都能在國際先進基礎上得到發展,從市場經濟角度看,這無疑是正確的。
但是,當國內所研製的計算機全部轉向使用進口元器件、進口部件時,一方面中國的高性能計算和PC機的發展依賴於進口元器件和進口部件的水平;另一方面中國的集成電路研製力量,由於缺少巨大的經濟支持,都轉向非計算機用的其他難度小的方向。
「元器件全部進口化」導致的結果是,不僅全部國產化的億次高性能巨型機研製中止,而且真正完全自主的國產的計算機集成電路研製工作也中斷,至今也沒有恢復,甚至沒有任何恢復的跡象,這兩方面對國家安全都很不利。實際上,「集成電路生產線大三角形」依靠進口的集成電路生產線,就等於依賴外國集成電路生產線水平和外國政府批准向中國出口的集成電路生產線的水平。引進無法達到最先進,而且在特殊情況下,引進很可能中斷,引進的生產線的備份件也不能得到更新。
「中國芯」何時真正崛起
進入21世紀以後,李德磊負責的「方舟」、胡偉武負責的「龍芯」、以及王沁參加負責的「多思」、方信我負責的「國安」等等「中國芯」項目不斷涌現,計算機產業鏈國產化又前進了一大步。但當前或者未來將出現的眾多的「中國芯」的共同點,都是「集成電路生產線大三角形」的一個應用。也就是說,其水平仍然是依賴於外國集成電路生產線水平和外國政府批准向中國出口的集成電路生產線的水平,仍然受制於人。
眾多「中國芯」的主要的差別只是在系統結構設計上,或者在高速低功耗電路等設計上,有沒有重大創新、重大突破。設計明顯創新的,有國外學者稱之為相當於「大學生課程設計」水平,雖然難聽卻也有幾分道理。盡管能設計「中國芯」的人或公司越來越多,但是能設計「中國集成電路生產線大三角形」的人,如果不採取措施,不僅目前沒有,恐怕不遠的將來仍然是空白。如果中國不能製造中國的「集成電路生產線大三角形」,那麼無論有多少種「中國芯」,中國的高性能計算機和中國PC機的發展水平就必然還是取決於美國「集成電路生產線大三角形」的發展水平及美國政府允許向中國出口的水平。
現實的道路是,我們可以通過引進、消化、吸收與獨立研究相結合的方式發展晶元產業,而建立完全自主的「集成電路生產線大三角」,則應該是國家急需解決的重中之重。
早在1965年,中科院半導體所王守覺就開始研製從邏輯圖到掩模版的自動形成系統「圖形發生器」,這項研究比美國還早。由於文革破壞而中斷了3年,1971年初研製成功時,反而比美國晚了一年多。以上歷史說明,中國人的獨立研究能力也不容忽視,研究環境也不容被忽視。
如何做到既能使產業鏈的各個環節的發展都能建立在國際最高水平之上,又能確保國家安全?這不僅僅是一個計算機產業鏈的問題,應該是許多產業鏈所存在的共同問題,更是決策者急需處理的政策問題。
中國半個世紀電子數字計算機事業的領路人,是在兩位共和國功勛科學家華羅庚和錢三強關注下的一個群體,這個群體在50年前,是10多名從相鄰領域轉過來的30~40多歲的中青年帶頭人,和五、六十名受過專業教育的20多歲的青年骨幹,還有數十名當時尚未出世的後起之秀,本文列舉的,只是這個百人群體中的一小部分。
鏈接:文中部分科學家簡歷
華羅庚:江蘇金壇人。中國解析數論、典型群、矩陣幾何學、自守函數論與多復變函數論等很多方面研究的創始人與開拓者,國際知名數學家,先後當選美國科學院外籍院士,第三世界科學院院士,法國南錫大學、美國伊利諾大學、香港中文大學榮譽博士,聯邦德國巴伐利亞科學院院士等。
錢三強:浙江湖州人,出生於浙江紹興。核物理專家、中國核原子科學之父,曾師從居里的女兒、諾貝爾獎獲得者伊萊娜?居里及其丈夫約里奧?居里。在中國研發原子彈期間,擔任技術總負責人、總設計師,被追授「兩彈一星功勛獎章」。
范新弼:電子計算機專家,湖南長沙人。1951年獲美國斯坦福大學電子學博士學位,在電子器件研究與應用領域獲8項美國專利。歸國後,領導我國第一台大型計算機及其後多台大型計算機的磁芯存儲器研製工作,領導中國半導體存儲元件研究,建立了國內第一批測試設備。
張效祥:計算機專家、中國科學院院士(學部委員)、中國解放軍總參謀部計算技術研究所研究員。領導中國第一台大型通用電子計算機的仿製並在此後的35年中主持中國自行設計的電子管、晶體管到大規模集成電路各代大型計算機的研製,為中國計算機事業的創建、開拓和發展,起了重要作用。1985年,領導完成中國第一台億次巨型並行計算機系統。
錢學森:中國現代物理學家、世界著名火箭專家、全國政協副主席,浙江杭州市人,生於上海。錢學森曾在美國任講師、副教授、教授以及超音速實驗室主任和古根罕噴氣推進研究中心主任。1950年開始,歷經5年努力,於1955年才回到祖國,1958年起長期擔任火箭導彈和航天器研製的技術領導職務。
董鐵寶:力學家、計算數學家,江蘇武進人,「中國第一個程序員」(王選),長期致力於結構力學、斷裂力學、材料力學性能、計算數學的研究和教學,我國計算機研製和斷裂力學研究的先驅者之一。1945年赴美學習,1956年歸國教學,1968年在文革中因受迫害自殺。
金怡濂:中國工程院院士、著名高性能計算機專家、國家最高科學技術獎獲得者,原籍江蘇常州。中國第一台大型計算機研製者之一,先後提出多種類型、各個時期居國內領先或國際先進水平的大型、巨型計算機系統的設計思想和技術方案,為我國高性能計算機技術的跨越式發展和趕超世界計算機先進水平有著重要貢獻。
王選:江蘇無錫人。著名的計算機應用專家,主要致力於文字、圖形、圖象的計算機處理研究。中國科學院院士、中國工程院院士、第三世界科學院院士、國家最高科學技術獎獲得者。曾任北大方正集團董事、方正控股有限公司首席科技顧問,九三學社副主席、中國科協副主席、九三學社副主席、中國科協副主席。2003年當選十屆全國政協副主席。
周巢塵:計算機軟體專家,原籍江蘇南匯,中國科學院院士(學部委員)、第三世界科學院院士、中國科學院軟體研究所研究員,曾任聯合國大學國際軟體技術研究所所長。
楊芙清:北京大學計算機學科第一位教授、博士生導師,中國科學院院士(學部委員)、計算機科學技術及軟體專家,無錫人。歷任軟體工程國家工程研究中心主任、北京大學信息與工程科學學部主任、北京大學軟體工程研究所所長、北京大學計算機科技系教授。
孫仲秀:計算機科學家、中國科學院院士,原籍浙江餘杭,生於江蘇省南京市,歷任南京大學助教、講師、副教授、教授、博士生導師、副校長等職。1974年後主持研製了中國國產系列計算機DJS200系列的DJS200/XT1和 DJS200/XT1P等操作系統。從1979年起開始對分布式計算機系統軟體和應用進行了研究,1982年在國內首次研製成功ZCZ分布式微型計算機系統,研究和開發了多個實用的分布式計算機系統。
何積豐:中國科學院院士、計算機軟體專家,生於上海,祖籍浙江寧波。現任華東師范大學終身教授、軟體學院院長,上海嵌入式系統研究所所長、聯合國大學國際軟體技術研究所高級研究員。早年進行管理信息系統和辦公自動化系統的研發。
吳幾康:安徽歙縣人。計算機專家、中國計算機事業的開拓者之一。曾於1951年至1953年在丹麥任無線電廠開發工程師,歸國後調至中國科學院近代物理研究所,後參與籌建計算技術研究所。1965年負責研製成功兩台大型通用計算機,後參與籌建771微電子學研究所,任副所長和研究員。
張梓昌:電子計算機專家。江蘇崇明(今屬上海市)人。歷任航天工業部第二研究院所長、測控公司總工程師,中國計算機學會第一屆副理事長,中國宇航學會第一、二屆理事。長期從事電子設備和計算機的研製,曾負責我國第一台計算機的技術工作,是我國計算機技術的學科帶頭人之一。
張世龍:北京大學計算機科學與技術系主任、教授,曾參加我國第一台自行設計製造的大型計算機119機和北大紅旗計算機的系統設計。
慈雲桂:著名計算機科學家、教授,中國科學院技術科學部學部委員,安徽桐城人。歷任國防科技大學副校長兼電子計算機系主任和計算機研究所所長等職,先後主持了我國多種型號計算機的研製,從領導研製我國第一台電子管數字計算專用機,到擔任「銀河」億次計算機研製的技術總指揮和總設計師,為國家經濟建設、國防建設及科學研究事業做出了突出貢獻。
馮康:應用數學和計算數學家、中國科學院院士、世界數學史上具有重要地位的科學家。生於江蘇南京,原籍浙江紹興。其獨立創造了有限元方法、自然歸化和自然邊界元方法,開辟了辛幾何和辛格式研究新領域。中國現代計算數學研究的開拓者。1997年底國家自然科學一等獎授予馮康的另一項工作「哈密爾頓系統辛幾何演算法」。歷任中國科學院計算技術研究所任副研究員、研究員,中國科學院計算中心主任、名譽主任。(排名不分先後)
(計算機世界報)
參考資料:http://www.cnii.com.cn/20060808/ca371826.htm
8. 半導體的發展史及其未來發展趨勢
1833年,英國巴拉迪最先發現硫化銀的電阻隨著溫度的變化情況不同於一般金屬,一般情況下,金屬的電阻隨溫度升高而增加,但巴拉迪發現硫化銀材料的電阻是隨著溫度的上升而降低。這是半導體現象的首次發現。
不久, 1839年法國的貝克萊爾發現半導體和電解質接觸形成的結,在光照下會產生一個電壓,這就是後來人們熟知的光生伏特效應,這是被發現的半導體的第二個特徵。
在1874年,德國的布勞恩觀察到某些硫化物的電導與所加電場的方向有關,即它的導電有方向性,在它兩端加一個正向電壓,它是導通的;如果把電壓極性反過來,它就不導電,這就是半導體的整流效應,也是半導體所特有的第三種特性。同年,舒斯特又發現了銅與氧化銅的整流效應。
1873年,英國的史密斯發現硒晶體材料在光照下電導增加的光電導效應,這是半導體又一個特有的性質。 半導體的這四個效應,(jianxia霍爾效應的余績——四個伴生效應的發現)雖在1880年以前就先後被發現了,但半導體這個名詞大概到1911年才被考尼白格和維斯首次使用。而總結出半導體的這四個特性一直到1947年12月才由貝爾實驗室完成。
很多人會疑問,為什麼半導體被認可需要這么多年呢?主要原因是當時的材料不純。沒有好的材料,很多與材料相關的問題就難以說清楚。
半導體於室溫時電導率約在10ˉ10~10000/Ω·cm之間,純凈的半導體溫度升高時電導率按指數上升。半導體材料有很多種,按化學成分可分為元素半導體和化合物半導體兩大類。除上述晶態半導體外,還有非晶態的有機物半導體等和本徵半導體。
1982年,江蘇無錫的江南無線電器材廠(742廠)IC生產線建成驗收投產,這是一條從日本東芝公司全面引進彩色和黑白電視機集成電路生產線,不僅擁有部封裝,而且有3英寸全新工藝設備的晶元製造線,不但引進了設備和凈化廠房及動力設備等「硬體」,而且還引進了製造工藝技術「軟體」。這是中國第一次從國外引進集成電路技術。第一期742廠共投資2.7億元(6600萬美元),建設目標是月投10000片3英寸矽片的生產能力,年產2648萬塊IC成品,產品為雙極型消費類線性電路,包括電視機電路和音響電路。到1984年達產,產量達到3000萬塊,成為中國技術先進、規模最大,具有工業化大生產的專業化工廠。 1982年10月,國務院為了加強全國計算機和大規模集成電路的領導,成立了以萬里副總理為組長的「電子計算機和大規模集成電路領導小組」,制定了中國IC發展規劃,提出「六五」期間要對半導體工業進行技術改造。 1983年,針對當時多頭引進,重復布點的情況,國務院大規模集成電路領導小組提出「治散治亂」,集成電路要「建立南北兩個基地和一個點」的發展戰略,南方基地主要指上海、江蘇和浙江,北方基地主要指北京、天津和沈陽,一個點指西安,主要為航天配套。
1986年,電子部廈門集成電路發展戰略研討會,提出「七五」期間我國集成電路技術「531」發展戰略,即普及推廣5微米技術,開發3微米技術,進行1微米技術科技攻關。 1988年,871廠紹興分廠,改名為華越微電子有限公司。 1988年9月,上無十四廠在技術引進項目,建了新廠房的基礎上,成立了中外合資公司――上海貝嶺微電子製造有限公司。 1988年,在上海元件五廠、上無七廠和上無十九廠聯合搞技術引進項目的基礎上,組建成中外合資公司――上海飛利浦半導體公司(現在的上海先進)。 1989年2月,機電部在無錫召開「八五」集成電路發展戰略研討會,提出了「加快基地建設,形成規模生產,注重發展專用電路,加強科研和支持條件,振興集成電路產業」的發展戰略。 1989年8月8日,742廠和永川半導體研究所無錫分所合並成立了中國華晶電子集團公司。
1990年10月,國家計委和機電部在北京聯合召開了有關領導和專家參加的座談會,並向黨中央進行了匯報,決定實施九O八工程。 1991年,首都鋼鐵公司和日本NEC公司成立中外合資公司――首鋼NEC電子有限公司。 1995年,電子部提出「九五」集成電路發展戰略:以市場為導向,以CAD為突破口,產學研用相結合,以我為主,開展國際合作,強化投資,加強重點工程和技術創新能力的建設,促進集成電路產業進入良性循環。 1995年10月,電子部和國家外專局在北京聯合召開國內外專家座談會,獻計獻策,加速我國集成電路產業發展。11月,電子部向國務院做了專題匯報,確定實施九0九工程。 1997年7月17日,由上海華虹集團與日本NEC公司合資組建的上海華虹NEC電子有限公司組建,總投資為12億美元,注冊資金7億美元,華虹NEC主要承擔「九0九」工程超大規模集成電路晶元生產線項目建設。 1998年1月,華晶與上華合作生產MOS圓片合約簽定,有效期四年,華晶晶元生產線開始承接上華公司來料加工業務。 1998年1月18日,「九0八」 主體工程華晶項目通過對外合同驗收,這條從朗訊科技公司引進的0.9微米的生產線已經具備了月投6000片6英寸圓片的生產能力。 1998年1月,中國華大集成電路設計中心向國內外用戶推出了熊貓2000系統,這是我國自主開發的一套EDA系統,可以滿足亞微米和深亞微米工藝需要,可處理規模達百萬門級,支持高層次設計。 1998年2月,韶光與群立在長沙簽訂LSI合資項目,投資額達2.4億元,合資建設大規模集成電路(LSI)微封裝,將形成封裝、測試集成電路5200萬塊的生產能力。 1998年2月28日,我國第一條8英寸硅單晶拋光片生產線建成投產,這個項目是在北京有色金屬研究總院半導體材料國家工程研究中心進行的。 1998年3月16日,北京華虹集成電路設計有限責任公司與日本NEC株式會社在北京長城-飯店舉行北京華虹NEC集成電路設計公司合資合同簽字儀式,新成立的合資公司其設計能力為每年約200個集成電路品種,並為華虹NEC生產線每年提供8英寸矽片兩萬片的加工訂單。 1998年4月,集成電路「九0八」工程九個產品設計開發中心項目驗收授牌,這九個設計中心為信息產業部電子第十五研究所、信息產業部電子第五下四研究所、上海集成電路設計公司、深圳先科設計中心、杭州東方設計中心、廣東專用電路設計中心、兵器第二一四研究所、北京機械工業自動化研究所和航天工業771研究所。這些設計中心是與華晶六英寸生產線項目配套建設的。 1998年6月,上海華虹NEC九0九二期工程啟動。 1998年6月12日,深港超大規模集成電路項目一期工程――後工序生產線及設計中心在深圳賽意法微電子有限公司正式投產,其集成電路封裝測試的年生產能力由原設計的3.18億塊提高到目前的7.3億塊,並將擴展的10億塊的水平。 1998年10月,華越集成電路引進的日本富士通設備和技術的生產線開始驗收試制投 片,-該生產線以雙極工藝為主、兼顧Bi-CMOS工藝、2微米技術水平、年投5英寸矽片15萬片、年產各類集成電路晶元1億只能力的前道工序生產線及動力配套系統。 1998年3月,由西安交通大學開元集團微電子科技有限公司自行設計開發的我國第一個-CMOS微型彩色攝像晶元開發成功,我國視覺晶元設計開發工作取得的一項可喜的成績。 1999年2月23日,上海華虹NEC電子有限公司建成試投片,工藝技術檔次從計劃中的0.5微米提升到了0.35微米,主導產品64M同步動態存儲器(S-DRAM)。這條生產線的建-成投產標志著我國從此有了自己的深亞微米超大規模集成電路晶元生產線。