半導體激光器工作波長與什麼有關
1. 半導體激光器 有源區的折射率為什麼和頻率有關
半導體激光器的調制帶寬是指可以輸出的或者載入的最高信號速率(對數字信號而言),或者是輸出(或載入的)模擬信號的最大帶寬。
提高激光器的調制帶寬,可以採取以下措施:
①有源區採用應變(抵償)多量子阱結構-量子阱激光器阱材料由於在平行於阱面方向受到雙軸壓應變和垂直於阱面方向的拉伸應變,其價帶頂的重空穴能級上升,而且這種價帶發生退簡並,使電子從自旋軌道分裂帶向重孔穴帶的躍遷幾率近似等於零,使室溫下的俄歇復合幾率減小,從而導致這種量子阱激光器的閾值電流下降,線寬增強因子減小以及弛豫振盪頻率、調制帶寬、微分增益系數顯著提高。
②有源區p型摻雜 p型摻雜可減小穿過SCH區域時的空穴輸運,這對高速量子阱器件是主要的限制;p型摻雜可以得到非常高的微分增益,並且使量子阱中載流子的分布更加均勻。 若有源區Zn摻雜濃度接近1018cm-3時,其3dB帶寬可達25GHz而且摻雜還可使器件的振盪頻率增加到30GHz腔長為300μm此外,重摻雜還有利於降低線寬增強因子和進一步提高微分增益,這些都有利於提高器件的調制特性。
③降低電學寄生參數-為了降低高速激光器的電學寄生參數,尤其是寄生電容,可採用半絕緣Fe-InP再生長掩埋技術,同時還需減小電極面積;採用自對准窄檯面結構(SA -CM以減小器件的寄生電容。人們還常利用填充聚醯亞胺的方法來減小寄生電容。
④提高激光器內部光子濃度和微分增益-增加激光器腔內的光子濃度,可增加本徵諧振頻率。利用DFB結構使激射波長與增益峰波長為負失諧(-10nm可以提高微分增益,這些都可以增加-3dB調制帶寬。 以上分析了限制半導體激光器高速調制特性的因素以及提高激光器調制帶寬的途徑,這些因素之間與其靜態特性之間是相互影響的所以在設計高速激光器時,還需考慮其他特性,如閾值、溫度特性等。
2. 半導體激光器為什麼溫度會影響其輸出波長,
用倍頻晶體的分離晶體式的半導體激光器,溫度變化會影響波長,因為溫度變化回會造成答熱脹冷縮,改變倍頻晶體的微觀結構,從而改變波長,如果是半導體激光二極體直接發光的,波長變化受溫度影響較小,但無論是那種半導體激光器,發光功率受溫度的影響都是較大的
溫度越高,波長越長
3. 如何改變半導體激光器的波長
你好,根據半導體激光器的發光機理,半導體激光器的輸出波長與注入電流有回密切關系,以DBR半導體激光答器為例,注入電流的改變能實現對激光器內部布拉格光柵有效折射率的改變,從而改變輸出波長,還有熱調諧,通過溫度控制改變內部介質折射率,進而改變波長。希望幫到你,感謝採納,繼續為你解答!
4. 半導體激光器可以應用於哪些方面
固態物質中,允許大量電子自由自在地在它裡面流動的叫導體;只允許極少數電子通過的叫絕緣體;導電性低於導體又高於絕緣體的叫半導體。激光工作物質採用半導體的激光器叫半導體激光器。盡管半導體本身也是一種固體,而且發光機理就本質上講與固體激光器沒有多大差別。但由於半導體物質結構不同,產生激光的受激輻射躍遷的高能級和低能級分別是「導帶」和「價帶」,輻射是電子與「空穴」復合的結果,具有其特殊性,所以沒有將它列入固體激光器。
半導體激光工作物質有幾十種,較為成熟的是砷化鎵(GaAs)、摻鋁砷化鎵等。激勵方式有光泵浦、電子轟擊、電注入式等。
半導體激光器體積小、重量輕、壽命長、結構簡單,因此,特別適於在飛機、軍艦、車輛和宇宙飛船上使用。有些半導體激光器可以通過外加的電場、磁場、溫度、壓力等改變激光的波長,即所謂的調諧,可以很方便地對輸出光束進行調制;半導體激光器的波長范圍為0.32~34微米,較寬廣。它能將電能直接轉換為激光能,效率已達10%以上。所有這些都使它受到重視,所以發展迅速,目前已廣泛應用於激光通信、測距、雷達、模擬、警戒、引燃引爆和自動控制等方面。
半導體激光器最大的缺點是:激光性能受溫度影響大,比如砷化鎵激光,當溫度從絕對溫度77°K變到室溫時,激光波長從0.84變到0.91微米。另外,效率雖高,但因體積小,總功率並不高,室溫下連續輸出不過幾十毫瓦,脈沖輸出只有幾瓦到幾十瓦。光束的發散角,一般在幾度到20度之間,所以在方向性、單色性和相乾性等方面較差。
5. 常見半導體激光器的工作波段有哪些
波長
紫光:400~410nm
藍光:445~450nm,462~465nm
綠光:510~520nm
橙紅及紅光:635~638nm,650~660nm
紅外光:780~2000nm
其他專更多不常見的稀有波長請屬參考日亞化學的激光二極體產品頁列表。
6. 急:激光器輸出功率與波長及精度的關系
能發射激光的裝置。1954年製成了第一台微波量子放大器,獲得了高度相乾的微波束。1958年A.L.肖洛和C.H.湯斯把微波量子放大器原理推廣應用到光頻范圍,並指出了產生激光的方法。1960年T.H.梅曼等人製成了第一台紅寶石激光器。1961年A.賈文等人製成了氦氖激光器。1962年R.N.霍耳等人創制了砷化鎵半導體激光器。以後,激光器的種類就越來越多。按工作介質分,激光器可分為氣體激光器、固體激光器、半導體激光器和染料激光器4大類。近來還發展了自由電子激光器,其工作介質是在周期性磁場中運動的高速電子束,激光波長可覆蓋從微波到X射線的廣闊波段。按工作方式分,有連續式、脈沖式、調Q和超短脈沖式等幾類。大功率激光器通常都是脈沖式輸出。各種不同種類的激光器所發射的激光波長已達數千種,最長的波長為微波波段的0.7毫米,最短波長為遠紫外區的210埃,X射線波段的激光器也正在研究中。
除自由電子激光器外,各種激光器的基本工作原理均相同,裝置的必不可少的組成部分包括激勵(或抽運)、具有亞穩態能級的工作介質和諧振腔( 見光學諧振腔)3部分。激勵是工作介質吸收外來能量後激發到激發態,為實現並維持粒子數反轉創造條件。激勵方式有光學激勵、電激勵、化學激勵和核能激勵等。工作介質具有亞穩能級是使受激輻射佔主導地位,從而實現光放大。諧振腔可使腔內的光子有一致的頻率、相位和運行方向,從而使激光具有良好的定向性和相乾性。
激光工作物質 是指用來實現粒子數反轉並產生光的受激輻射放大作用的物質體系,有時也稱為激光增益媒質,它們可以是固體(晶體、玻璃)、氣體(原子氣體、離子氣體、分子氣體)、半導體和液體等媒質。對激光工作物質的主要要求,是盡可能在其工作粒子的特定能級間實現較大程度的粒子數反轉,並使這種反轉在整個激光發射作用過程中盡可能有效地保持下去;為此,要求工作物質具有合適的能級結構和躍遷特性。
激勵(泵浦)系統 是指為使激光工作物質實現並維持粒子數反轉而提供能量來源的機構或裝置。根據工作物質和激光器運轉條件的不同,可以採取不同的激勵方式和激勵裝置,常見的有以下四種。①光學激勵(光泵)。是利用外界光源發出的光來輻照工作物質以實現粒子數反轉的,整個激勵裝置,通常是由氣體放電光源(如氙燈、氪燈)和聚光器組成。②氣體放電激勵。是利用在氣體工作物質內發生的氣體放電過程來實現粒子數反轉的,整個激勵裝置通常由放電電極和放電電源組成。③化學激勵。是利用在工作物質內部發生的化學反應過程來實現粒子數反轉的,通常要求有適當的化學反應物和相應的引發措施。④核能激勵。是利用小型核裂變反應所產生的裂變碎片、高能粒子或放射線來激勵工作物質並實現粒子數反轉的。
光學共振腔 通常是由具有一定幾何形狀和光學反射特性的兩塊反射鏡按特定的方式組合而成。作用為:①提供光學反饋能力,使受激輻射光子在腔內多次往返以形成相乾的持續振盪。②對腔內往返振盪光束的方向和頻率進行限制,以保證輸出激光具有一定的定向性和單色性。共振腔作用①,是由通常組成腔的兩個反射鏡的幾何形狀(反射面曲率半徑)和相對組合方式所決定;而作用②,則是由給定共振腔型對腔內不同行進方向和不同頻率的光,具有不同的選擇性損耗特性所決定的。
分類 激光器的種類是很多的。下面,將分別從激光工作物質、激勵方式、運轉方式、輸出波長范圍等幾個方面進行分類介紹。
按工作物質分類 根據工作物質物態的不同可把所有的激光器分為以下幾大類:①固體(晶體和玻璃)激光器,這類激光器所採用的工作物質,是通過把能夠產生受激輻射作用的金屬離子摻入晶體或玻璃基質中構成發光中心而製成的;②氣體激光器,它們所採用的工作物質是氣體,並且根據氣體中真正產生受激發射作用之工作粒子性質的不同,而進一步區分為原子氣體激光器、離子氣體激光器、分子氣體激光器、準分子氣體激光器等;③液體激光器,這類激光器所採用的工作物質主要包括兩類,一類是有機熒光染料溶液,另一類是含有稀土金屬離子的無機化合物溶液,其中金屬離子(如Nd)起工作粒子作用,而無機化合物液體(如SeOCl)則起基質的作用;④半導體激光器,這類激光器是以一定的半導體材料作工作物質而產生受激發射作用,其原理是通過一定的激勵方式(電注入、光泵或高能電子束注入),在半導體物質的能帶之間或能帶與雜質能級之間,通過激發非平衡載流子而實現粒子數反轉,從而產生光的受激發射作用;⑤自由電子激光器,這是一種特殊類型的新型激光器,工作物質為在空間周期變化磁場中高速運動的定向自由電子束,只要改變自由電子束的速度就可產生可調諧的相干電磁輻射,原則上其相干輻射譜可從X射線波段過渡到微波區域,因此具有很誘人的前景。
按激勵方式分類 ①光泵式激光器。指以光泵方式激勵的激光器,包括幾乎是全部的固體激光器和液體激光器,以及少數氣體激光器和半導體激光器。②電激勵式激光器。大部分氣體激光器均是採用氣體放電(直流放電、交流放電、脈沖放電、電子束注入)方式進行激勵,而一般常見的半導體激光器多是採用結電流注入方式進行激勵,某些半導體激光器亦可採用高能電子束注入方式激勵。③化學激光器。這是專門指利用化學反應釋放的能量對工作物質進行激勵的激光器,反希望產生的化學反應可分別採用光照引發、放電引發、化學引發。④核泵浦激光器。指專門利用小型核裂變反應所釋放出的能量來激勵工作物質的一類特種激光器,如核泵浦氦氬激光器等。
按運轉方式分類 由於激光器所採用的工作物質、激勵方式以及應用目的的不同,其運轉方式和工作狀態亦相應有所不同,從而可區分為以下幾種主要的類型。①連續激光器,其工作特點是工作物質的激勵和相應的激光輸出,可以在一段較長的時間范圍內以連續方式持續進行,以連續光源激勵的固體激光器和以連續電激勵方式工作的氣體激光器及半導體激光器,均屬此類。由於連續運轉過程中往往不可避免地產生器件的過熱效應,因此多數需採取適當的冷卻措施。②單次脈沖激光器,對這類激光器而言,工作物質的激勵和相應的激光發射,從時間上來說均是一個單次脈沖過程,一般的固體激光器、液體激光器以及某些特殊的氣體激光器,均採用此方式運轉,此時器件的熱效應可以忽略,故可以不採取特殊的冷卻措施。③重復脈沖激光器,這類器件的特點是其輸出為一系列的重復激光脈沖,為此,器件可相應以重復脈沖的方式激勵,或以連續方式進行激勵但以一定方式調制激光振盪過程,以獲得重復脈沖激光輸出,通常亦要求對器件採取有效的冷卻措施。④調激光器,這是專門指採用一定的 開關技術以獲得較高輸出功率的脈沖激光器,其工作原理是在工作物質的粒子數反轉狀態形成後並不使其產生激光振盪 (開關處於關閉狀態),待粒子數積累到足夠高的程度後,突然瞬時打開 開關,從而可在較短的時間內(例如10~10秒)形成十分強的激光振盪和高功率脈沖激光輸出(見技術'" class=link>激光調 技術)。⑤鎖模激光器,這是一類採用鎖模技術的特殊類型激光器,其工作特點是由共振腔內不同縱向模式之間有確定的相位關系,因此可獲得一系列在時間上來看是等間隔的激光超短脈沖(脈寬10~10秒)序列,若進一步採用特殊的快速光開關技術,還可以從上述脈沖序列中選擇出單一的超短激光脈沖(見激光鎖模技術)。⑥單模和穩頻激光器,單模激光器是指在採用一定的限模技術後處於單橫模或單縱模狀態運轉的激光器,穩頻激光器是指採用一定的自動控制措施使激光器輸出波長或頻率穩定在一定精度范圍內的特殊激光器件,在某些情況下,還可以製成既是單模運轉又具有頻率自動穩定控制能力的特種激光器件(見激光穩頻技術)。⑦可調諧激光器,在一般情況下,激光器的輸出波長是固定不變的,但採用特殊的調諧技術後,使得某些激光器的輸出激光波長,可在一定的范圍內連續可控地發生變化,這一類激光器稱為可調諧激光器(見激光調諧技術)。
按輸出波段范圍分類 根據輸出激光波長范圍之不同,可將各類激光器區分為以下幾種。①遠紅外激光器,輸出波長范圍處於25~1000微米之間, 某些分子氣體激光器以及自由電子激光器的激光輸出即落入這一區域。②中紅外激光器,指輸出激光波長處於中紅外區(2.5~25微米)的激光器件,代表者為CO分子氣體激光器(10.6微米)、 CO分子氣體激光器(5~6微米)。③近紅外激光器,指輸出激光波長處於近紅外區(0.75~2.5微米)的激光器件,代表者為摻釹固體激光器(1.06微米)、CaAs半導體二極體激光器(約 0.8微米)和某些氣體激光器等。④可見激光器,指輸出激光波長處於可見光譜區(4000~7000埃或0.4~0.7微米)的一類激光器件,代表者為紅寶石激光器 (6943埃)、 氦氖激光器(6328埃)、氬離子激光器(4880埃、5145埃)、氪離子激光器(4762埃、5208埃、5682埃、6471埃)以及一些可調諧染料激光器等。⑤近紫外激光器,其輸出激光波長范圍處於近紫外光譜區(2000~4000埃),代表者為氮分子激光器(3371埃)氟化氙(XeF)準分子激光器(3511埃、3531埃)、 氟化氪(KrF)準分子激光器(2490埃)以及某些可調諧染料激光器等⑥真空紫外激光器,其輸出激光波長范圍處於真空紫外光譜區(50~2000埃)代表者為(H)分子激光器 (1644~1098埃)、氙(Xe)準分子激光器(1730埃)等。⑦X射線激光器, 指輸出波長處於X射線譜區(0.01~50埃)的激光器系統,目前軟X 射線已研製成功,但仍處於探索階段
激光器的發明
激光器的發明是20世紀科學技術的一項重大成就。它使人們終於有能力駕駛尺度極小、數量極大、運動極混亂的分子和原子的發光過程,從而獲得產生、放大相乾的紅外線、可見光線和紫外線(以至X射線和γ射線)的能力。激光科學技術的興起使人類對光的認識和利用達到了一個嶄新的水平。
激光器的誕生史大致可以分為幾個階段,其中1916年愛因斯坦提出的受激輻射概念是其重要的理論基礎。這一理論指出,處於高能態的物質粒子受到一個能量等於兩個能級之間能量差的光子的作用,將轉變到低能態,並產生第二個光子,同第一個光子同時發射出來,這就是受激輻射。這種輻射輸出的光獲得了放大,而且是相干光,即如多個光子的發射方向、頻率、位相、偏振完全相同。
此後,量子力學的建立和發展使人們對物質的微觀結構及運動規律有了更深入的認識,微觀粒子的能級分布、躍遷和光子輻射等問題也得到了更有力的證明,這也在客觀上更加完善了愛因斯坦的受激輻射理論,為激光器的產生進一步奠定了理論基礎。20世紀40年代末,量子電子學誕生後,被很快應用於研究電磁輻射與各種微觀粒子系統的相互作用,並研製出許多相應的器件。這些科學理論和技術的快速發展都為激光器的發明創造了條件。
如果一個系統中處於高能態的粒子數多於低能態的粒子數,就出現了粒子數的反轉狀態。那麼只要有一個光子引發,就會迫使一個處於高能態的原子受激輻射出一個與之相同的光子,這兩個光子又會引發其他原子受激輻射,這樣就實現了光的放大;如果加上適當的諧振腔的反饋作用便形成光振盪,從而發射出激光。這就是激光器的工作原理。1951年,美國物理學家珀塞爾和龐德在實驗中成功地造成了粒子數反轉,並獲得了每秒50千赫的受激輻射。稍後,美國物理學家查爾斯·湯斯以及蘇聯物理學家馬索夫和普羅霍洛夫先後提出了利用原子和分子的受激輻射原理來產生和放大微波的設計。
然而上述的微波波譜學理論和實驗研究大都屬於「純科學」,對於激光器到底能否研製成功,在當時還是很渺茫的。
但科學家的努力終究有了結果。1954年,前面提到的美國物理學家湯斯終於製成了第一台氨分子束微波激射器,成功地開創了利用分子和原子體系作為微波輻射相干放大器或振盪器的先例。
湯斯等人研製的微波激射器只產生了1.25厘米波長的微波,功率很小。生產和科技不斷發展的需要推動科學家們去探索新的發光機理,以產生新的性能優異的光源。1958年,湯斯與姐夫阿瑟·肖洛將微波激射器與光學、光譜學的理論知識結合起來,提出了採用開式諧振腔的關鍵性建議,並預防了激光的相乾性、方向性、線寬和噪音等性質。同期,巴索夫和普羅霍洛夫等人也提出了實現受激輻射光放大的原理性方案。
此後,世界上許多實驗室都被捲入了一場激烈的研製競賽,看誰能成功製造並運轉世界上第一台激光器。
1960年,美國物理學家西奧多·梅曼在佛羅里達州邁阿密的研究實驗室里,勉強贏得了這場世界范圍內的研製競賽。他用一個高強閃光燈管來刺激在紅寶石水晶里的鉻原子,從而產生一條相當集中的纖細紅色光柱,當它射向某一點時,可使這一點達到比太陽還高的溫度。
「梅曼設計」引起了科學界的震驚和懷疑,因為科學家們一直在注視和期待著的是氦氖激光器。
盡管梅曼是第一個將激光引入實用領域的科學家,但在法庭上,關於到底是誰發明了這項技術的爭論,曾一度引起很大爭議。競爭者之一就是「激光」(「受激輻射式光頻放大器」的縮略詞)一詞的發明者戈登·古爾德。他在1957年攻讀哥倫比亞大學博士學位時提出了這個詞。與此同時,微波激射器的發明者湯斯與肖洛也發展了有關激光的概念。經法庭最終判決,湯斯因研究的書面工作早於古爾德9個月而成為勝者。不過梅曼的激光器的發明權卻未受到動搖。
1960年12月,出生於伊朗的美國科學家賈萬率人終於成功地製造並運轉了全世界第一台氣體激光器——氦氖激光器。1962年,有三組科學家幾乎同時發明了半導體激光器。1966年,科學家們又研製成了波長可在一段范圍內連續調節的有機染料激光器。此外,還有輸出能量大、功率高,而且不依賴電網的化學激光器等紛紛問世。
由於激光器具備的種種突出特點,因而被很快運用於工業、農業、精密測量和探測、通訊與信息處理、醫療、軍事等各方面,並在許多領域引起了革命性的突破。比如,人們利用激光集中而極高的能量,可以對各種材料進行加工,能夠做到在一個針頭上鑽200個孔;激光作為一種在生物機體上引起刺激、變異、燒灼、汽化等效應的手段,已在醫療、農業的實際應用上取得了良好效果;在通信領域,一條用激光柱傳送信號的光導電纜,可以攜帶相當於2萬根電話銅線所攜帶的信息量;激光在軍事上除用於通信、夜視、預警、測距等方面外,多種激光武器和激光制導武器也已經投入實用。
今後,隨著人類對激光技術的進一步研究和發展,激光器的性能和成本將進一步降低,但是它的應用范圍卻還將繼續擴大,並將發揮出越來越巨大的作用。
7. 測量半導體激光器的波長
就是把CD當做衍射光柵,研究第一階衍射,通過計算衍射角度就可以知道對應的波長。其實光譜儀也是這個原理
8. 半導體激光器溫度為什麼對波長有影響
採用倍頻晶體的分離晶體式的半導體激光器,溫度變化會影響波長,因為溫度變化會造成專熱脹冷縮,屬改變倍頻晶體的微觀結構,從而改變波長,如果是半導體激光二極體直接發光的,波長變化受溫度影響較小,但無論是那種半導體激光器,發光功率受溫度的影響都是較大的……
9. 全固態激光器輸出波長與哪些因素有關
增益介質的增益帶寬,腔的頻率選擇,pump電流,溫度
10. 光纖耦合的半導體激光器的輸出光亮度和什麼因素有關(浙大光學工程考研題)
光纖耦合的半導體激光器的輸出光亮度也就是指光纖尾纖輸出的光亮度。
光亮度是內表示發光面明亮程度容的,指發光表面在指定方向的發光強度與垂直且指定方向的發光面的面積之比,單位是坎德拉/平方米。
所以這里能找到相關項:發光強度、方向、光纖類型。
發光強度主要與半導體晶元的出光功率及耦合效率有關,如果光纖長度很長還得考慮光纖損耗。
而對於光纖來說,光纖的NA是一定的,如果波長不變,發散角是不變的。但激光器是可調諧半導體激光器或者晶元工作溫度發生變化,這些會導致輸出波長變化。
光纖分為單模光纖和多模光纖,單模光纖芯徑小,幾個微米,而多模光纖芯徑大,50um 以上,這樣發光面就有不小的差別。
綜上
光纖耦合的半導體激光器的輸出光亮度 是在不考慮波長的情況下 激光器晶元輸出功率越高,耦合效率越大,使用的光纖芯徑越小,亮度越大。