氮化碳是什麼類型半導體
『壹』 什麼是P型半導體和N型半導體都有哪些性質呢
P型半導體
多數載流子為空穴的半導體。
型半導體中,空穴為多子,自由電子為少子,主要靠空穴導電。由於P型半導體中正電荷量與負電荷量相等,故P型半導體呈電中性。空穴主要由雜質原子提供,自由電子由熱激發形成。摻入的雜質越多,多子(空穴)的濃度就越高,導電性能就越強。
N型半導體
多數載流子為電子的半導體
也稱為電子型半導體。N型半導體即自由電子濃度遠大於空穴濃度的雜質半導體。
在純凈的硅晶體中摻入Ⅴ族元素(如磷、砷、銻等),使之取代晶格中硅原子的位置,就形成了N型半導體。這類雜質提供了帶負電(Negative)的電子載流子,稱他們為施主雜質或n型雜質。在N型半導體中,自由電子為多子,空穴為少子,主要靠自由電子導電,由於N型半導體中正電荷量與負電荷量相等,故N型半導體呈電中性。自由電子主要由雜質原子提供,空穴由熱激發形成。摻入的雜質越多,多子(自由電子)的濃度就越高,導電性能就越強。
『貳』 如何判斷化合物是n型半導體還是p型半導體導電
N型半導體:在純凈的硅晶體中摻入五價元素(如磷),使之取代晶格中硅原回子的位置,就形成了答N型半導體。
多數載流子:N型半導體中,自由電子的濃度大於空穴的濃度,稱為多數載流子,簡稱多子。
少數載流子:N型半導體中,空穴為少數載流子,簡稱少子。
施子原子:雜質原子可以提供電子,稱施子原子。
N型半導體的導電特性:它是靠自由電子導電,摻入的雜質越多,多子(自由電子)的濃度就越高,導電性能也就越強。
P型半導體:在純凈的硅晶體中摻入三價元素(如硼),使之取代晶格中硅原子的位置,形成P型半導體。
PN結的形成:將P型半導體與N型半導體製作在同一塊矽片上,在它們的交界面就形成PN結。
PN結的特點:具有單向導電性。
半導體摻雜後仍是中性的,判斷它是主要是什麼導電的就行了啊.是電子那就是 n型,空穴就p.
『叄』 石墨相氮化碳是n型還是p型半導體
未摻雜的石墨相氮化碳是本徵半導體,個人理解。
『肆』 怎樣判斷半導體是N型還是P型具體闡述。謝謝~
用霍爾效應:兩端通電,在內部會形成穩定電流,但在半導體的上下表面是沒有電位差的;然後在半導體的兩個對面的側,加一個面磁場,這個時候在半導體另兩個側面上會形成電勢差(因為內部的載流子在磁場作用下發生了偏轉)。
因為N型半導體載流子是電子,故根據電流的方向和兩個側面的電位高低就可以進行判斷。
如果條件允許,找一個摻雜已知的半導體,然後把他們粘到一起,組成個整體結,分別測兩端電流導通情況,如果出現不能導通情況,則說明未知的和已知的相反,如果都導通,則相同。
當電流垂直於外磁場通過半導體時,載流子發生偏轉,垂直於電流和磁場的方向會產生一附加電場,從而在半導體的兩端產生電勢差,這一現象就是霍爾效應,這個電勢差也被稱為霍爾電勢差。霍爾效應使用左手定則判斷。
(4)氮化碳是什麼類型半導體擴展閱讀:
在半導體上外加與電流方向垂直的磁場,會使得半導體中的電子與空穴受到不同方向的洛倫茲力而在不同方向上聚集,在聚集起來的電子與空穴之間會產生電場。
電場力與洛倫茲力產生平衡之後,不再聚集,此時電場將會使後來的電子和空穴受到電場力的作用而平衡掉磁場對其產生的洛倫茲力,使得後來的電子和空穴能順利通過不會偏移。
固體材料中的載流子在外加磁場中運動時,因為受到洛侖茲力的作用而使軌跡發生偏移,並在材料兩側產生電荷積累,形成垂直於電流方向的電場,最終使載流子受到的洛侖茲力與電場斥力相平衡,從而在兩側建立起一個穩定的電勢差即霍爾電壓。
正交電場和電流強度與磁場強度的乘積之比就是霍爾系數。平行電場和電流強度之比就是電阻率。大量的研究揭示:參加材料導電過程的不僅有帶負電的電子,還有帶正電的空穴。
『伍』 半導體的類型-N型、P型是怎樣定義和區別的
下面,我們將採用對比分析的方法來認識P型半導體和N型半導體。
P型半導體也稱為空穴型半導體。P型半導體即空穴濃度遠大於自由電子濃度的雜質半導體。在純凈的硅晶體中摻入三價元素(如硼),使之取代晶格中硅原子的位子,就形成P型半導體。在P型半導體中,空穴為多子,自由電子為少子,主要靠空穴導電。空穴主要由雜質原子提供,自由電子由熱激發形成。摻入的雜質越多,多子(空穴)的濃度就越高,導電性能就越強。
N型半導體也稱為電子型半導體。N型半導體即自由電子濃度遠大於空穴濃度的雜質半導體。在純凈的硅晶體中摻入五價元素(如磷),使之取代晶格中硅原子的位置,就形成了N型半導體。在N型半導體中,自由電子為多子,空穴為少子,主要靠自由電子導電。自由電子主要由雜質原子提供,空穴由熱激發形成。摻入的雜質越多,多子(自由電子)的濃度就越高,導電性能就越強。
(5)氮化碳是什麼類型半導體擴展閱讀
半導體( semiconctor),指常溫下導電性能介於導體(conctor)與絕緣體(insulator)之間的材料。半導體在收音機、電視機以及測溫上有著廣泛的應用。如二極體就是採用半導體製作的器件。半導體是指一種導電性可受控制,范圍可從絕緣體至導體之間的材料。無論從科技或是經濟發展的角度來看,半導體的重要性都是非常巨大的。今日大部分的電子產品,如計算機、行動電話或是數字錄音機當中的核心單元都和半導體有著極為密切的關連。常見的半導體材料有硅、鍺、砷化鎵等,而硅更是各種半導體材料中,在商業應用上最具有影響力的一種。
以GaN(氮化鎵)為代表的第三代半導體材料及器件的開發是新興半導體產業的核心和基礎,其研究開發呈現出日新月異的發展勢態。GaN基光電器件中,藍色發光二極體LED率先實現商品化生產 成功開發藍光LED和LD之後,科研方向轉移到GaN紫外光探測器上 GaN材料在微波功率方面也有相當大的應用市場。氮化鎵半導體開關被譽為半導體晶元設計上一個新的里程碑。美國佛羅里達大學的科學家已經開發出一種可用於製造新型電子開關的重要器件,這種電子開關可以提供平穩、無間斷電源。
參考資料
半導體-網路
『陸』 什麼是N型半導體 什麼是P型半導體
在半導體材料硅或鍺晶體中摻入三價元素雜質可構成缺殼粒的P型半導體,摻入五價元素雜質可構成多餘殼粒的N形半導體。 ( 兩種半導體接觸在一起的點或面構成PN結,在接觸點或面上N型半導體多餘殼粒趨向P型半導體,並形成阻擋層或接觸電位差。當P型接正極,N型接負極,N型半導體多餘殼粒和PN結上殼粒易往正移動,且阻擋層變薄接觸電位差變小,即電阻變小,可形成較大電流;反之當P型接負極,N型接正極,因為P半導體缺殼粒,熱運動也難分離出殼粒往正極運動,且阻擋層變厚接觸電位差變大,電阻變大,形成較小電流,即具有單向通過電流屬性。 ) 多子與少子是相對概念。 如:在N型半導體中自由電子是多數載流子,簡稱為「多子」;空穴為小數載流子,稱為「少子」。而在P型中則相反。 ----考試的話,答概念就可以了,具體的作用過程你就不用記了。
『柒』 氮化碳晶體類型是....
原子晶體
鍵長短,鍵能大
『捌』 半導體製冷,什麼n型p型半導體是什麼意思
半導體理論比較深奧,枯燥和抽象,你看了可能乏味,所以只能簡單告訴專你。
自然界中能導電的物屬質稱為導體,如金屬、石墨等;不能導電的物質稱為絕緣體,如玻璃、陶瓷等;處於兩者之間的物質,稱為半導體,如鍺、硅、砷化鎵等。
在純凈的硅晶體中摻入五價元素(如磷),使之取代晶格中硅原子的位置,形成主要靠自由電子導電的是N型半導體。
在純凈的硅晶體中摻入三價元素(如硼),使之取代硅晶格中硅原子的位置,就形成了主要靠空穴導電的是P型半導體。