半導體具有什麼性質
⑴ 半導體有些什麼性質(效應)
沒有半導體你就提不了這個問了
在半導體中雜質 半導體中的雜質對電阻率的影響非常大。半導體中摻入微量雜質時,雜質原子附近的周期勢場受到干擾並形成附加的束縛狀態,在禁帶中產加的雜質能級。例如四價元素鍺或硅晶體中摻入五價元素磷、砷、銻等雜質原子時,雜質原子作為晶格的一分子,其五個價電子中有四個與周圍的鍺(或硅)原子形成共價結合,多餘的一個電子被束縛於雜質原子附近,產生類氫能級。雜質能級位於禁帶上方靠近導帶底附近。雜質能級上的電子很易激發到導帶成為電子載流子。這種能提供電子載流子的雜質稱為施主,相應能級稱為施主能級。施主能級上的電子躍遷到導帶所需能量比從價帶激發到導帶所需能量小得多(圖2)。在鍺或硅晶體中摻入微量三價元素硼、鋁、鎵等雜質原子時,雜質原子與周圍四個鍺(或硅)原子形成共價結合時尚缺少一個電子,因而存在一個空位,與此空位相應的能量狀態就是雜質能級,通常位於禁帶下方靠近價帶處。價帶中的電子很易激發到雜質能級上填補這個空位,使雜質原子成為負離子。價帶中由於缺少一個電子而形成一個空穴載流子(圖3)。這種能提供空穴的雜質稱為受主雜質。存在受主雜質時,在價帶中形成一個空穴載流子所需能量比本徵半導體情形要小得多。半導體摻雜後其電阻率大大下降。加熱或光照產生的熱激發或光激發都會使自由載流子數增加而導致電阻率減小,半導體熱敏電阻和光敏電阻就是根據此原理製成的。對摻入施主雜質的半導體,導電載流子主要是導帶中的電子,屬電子型導電,稱N型半導體。摻入受主雜質的半導體屬空穴型導電,稱P型半導體。半導體在任何溫度下都能產生電子-空穴對,故N型半導體中可存在少量導電空穴,P型半導體中可存在少量導電電子,它們均稱為少數載流子。在半導體器件的各種效應中,少數載流子常扮演重要角色
PN結 P型半導體與N型半導體相互接觸時,其交界區域稱為PN結。P區中的自由空穴和N區中的自由電子要向對方區域擴散,造成正負電荷在 PN 結兩側的積累,形成電偶極層(圖4 )。電偶極層中的電場方向正好阻止擴散的進行。當由於載流子數密度不等引起的擴散作用與電偶層中電場的作用達到平衡時,P區和N區之間形成一定的電勢差,稱為接觸電勢差。由於P 區中的空穴向N區擴散後與N區中的電子復合,而N區中的電子向P區擴散後與P 區中的空穴復合,這使電偶極層中自由載流子數減少而形成高阻層,故電偶極層也叫阻擋層,阻擋層的電阻值往往是組成PN結的半導體的原有阻值的幾十倍乃至幾百倍。
PN結具有單向導電性,半導體整流管就是利用PN結的這一特性製成的。PN結的另一重要性質是受到光照後能產生電動勢,稱光生伏打效應,可利用來製造光電池。半導體三極體、可控硅、PN結光敏器件和發光二極體等半導體器件均利用了PN結的特性。
基於PN結,就有了晶體管,才有了集成電路,電子產品中的各種晶元都是集成電路
⑵ 半導體有哪些性質
導電性能介於導體與絕緣體(insulator)之間的材料,叫做半導體(semiconctor).
物質存在的形式多種多樣,固體、液體、氣體、等離子體等等。我們通常把導電性和導電導熱性差或不好的材料,如金剛石、人工晶體、琥珀、陶瓷等等,稱為絕緣體。而把導電、導熱都比較好的金屬如金、銀、銅、鐵、錫、鋁等稱為導體。可以簡單的把介於導體和絕緣體之間的材料稱為半導體。與金屬和絕緣體相比,半導體材料的發現是最晚的,直到20世紀30年代,當材料的提純技術改進以後,半導體的存在才真正被學術界認可。
半導體的發現實際上可以追溯到很久以前,
1833年,英國巴拉迪最先發現硫化銀的電阻隨著溫度的變化情況不同於一般金屬,一般情況下,金屬的電阻隨溫度升高而增加,但巴拉迪發現硫化銀材料的電阻是隨著溫度的上升而降低。這是半導體現象的首次發現。不久,
1839年法國的貝克萊爾發現半導體和電解質接觸形成的結,在光照下會產生一個電壓,這就是後來人們熟知的光生伏特效應,這是被發現的半導體的第二個特徵。
在1874年,德國的布勞恩觀察到某些硫化物的電導與所加電場的方向有關,即它的導電有方向性,在它兩端加一個正向電壓,它是導通的;如果把電壓極性反過來,它就不導電,這就是半導體的整流效應,也是半導體所特有的第三種特性。同年,舒斯特又發現了銅與氧化銅的整流效應。
1873年,英國的史密斯發現硒晶體材料在光照下電導增加的光電導效應,這是半導體又一個特有的性質。
半導體的這四個效應,(jianxia霍爾效應的余績——四個伴生效應的發現)雖在1880年以前就先後被發現了,但半導體這個名詞大概到1911年才被考尼白格和維斯首次使用。而總結出半導體的這四個特性一直到1947年12月才由貝爾實驗室完成。很多人會疑問,為什麼半導體被認可需要這么多年呢?主要原因是當時的材料不純。沒有好的材料,很多與材料相關的問題就難以說清楚。
半導體於室溫時電導率約在10ˉ10~10000/ω·cm之間,純凈的半導體溫度升高時電導率按指數上升。半導體材料有很多種,按化學成分可分為元素半導體和化合物半導體兩大類。鍺和硅是最常用的元素半導體;化合物半導體包括ⅲ-ⅴ 族化合物(砷化鎵、磷化鎵等)、ⅱ-ⅵ族化合物( 硫化鎘、硫化鋅等)、氧化物(錳、鉻、鐵、銅的氧化物),以及由ⅲ-ⅴ族化合物和ⅱ-ⅵ族化合物組成的固溶體(鎵鋁砷、鎵砷磷等)。除上述晶態半導體外,還有非晶態的有機物半導體等。
本徵半導體(intrinsic semiconctor) 沒有摻雜且無晶格缺陷的純凈半導體稱為本徵半導體。在絕對零度溫度下,半導體的價帶(valence band)是滿帶(見能帶理論),受到光電注入或熱激發後,價帶中的部分電子會越過禁帶(forbidden band/band gap)進入能量較高的空帶,空帶中存在電子後成為導帶(conction band),價帶中缺少一個電子後形成一個帶正電的空位,稱為空穴(hole),導帶中的電子和價帶中的空穴合稱為電子 - 空穴對。上述產生的電子和空穴均能自由移動,成為自由載流子(free carrier),它們在外電場作用下產生定向運動而形成宏觀電流,分別稱為電子導電和空穴導電。這種由於電子-空穴對的產生而形成的混合型導電稱為本徵導電。導帶中的電子會落入空穴,使電子-空穴對消失,稱為復合(recombination)。復合時產生的能量以電磁輻射(發射光子photon)或晶格熱振動(發射聲子phonon)的形式釋放。在一定溫度下,電子 - 空穴對的產生和復合同時存在並達到動態平衡,此時本徵半導體具有一定的載流子濃度,從而具有一定的電導率。加熱或光照會使半導體發生熱激發或光激發,從而產生更多的電子 - 空穴對,這時載流子濃度增加,電導率增加。半導體熱敏電阻和光敏電阻等半導體器件就是根據此原理製成的。常溫下本徵半導體的電導率較小,載流子濃度對溫度變化敏感,所以很難對半導體特性進行控制,因此實際應用不多。
雜質半導體(extrinsic semiconctor) 半導體中的雜質對電導率的影響非常大,本徵半導體經過摻雜就形成雜質半導體,一般可分為n型半導體和p型半導體。半導體中摻入微量雜質時,雜質原子附近的周期勢場受到干擾並形成附加的束縛狀態,在禁帶中產生附加的雜質能級。能提供電子載流子的雜質稱為施主(donor)雜質,相應能級稱為施主能級,位於禁帶上方靠近導帶底附近。例如四價元素鍺或硅晶體中摻入五價元素磷、砷、銻等雜質原子時,雜質原子作為晶格的一分子,其五個價電子中有四個與周圍的鍺(或硅)原子形成共價鍵,多餘的一個電子被束縛於雜質原子附近,產生類氫淺能級-施主能級。施主能級上的電子躍遷到導帶所需能量比從價帶激發到導帶所需能量小得多,很易激發到導帶成為電子載流子,因此對於摻入施主雜質的半導體,導電載流子主要是被激發到導帶中的電子,屬電子導電型,稱為n型半導體。由於半導體中總是存在本徵激發的電子空穴對,所以在n型半導體中電子是多數載流子,空穴是少數載流子。相應地,能提供空穴載流子的雜質稱為受主(acceptor)雜質,相應能級稱為受主能級,位於禁帶下方靠近價帶頂附近。例如在鍺或硅晶體中摻入微量三價元素硼、鋁、鎵等雜質原子時,雜質原子與周圍四個鍺(或硅)原子形成共價結合時尚缺少一個電子,因而存在一個空位,與此空位相應的能量狀態就是受主能級。由於受主能級靠近價帶頂,價帶中的電子很容易激發到受主能級上填補這個空位,使受主雜質原子成為負電中心。同時價帶中由於電離出一個電子而留下一個空位,形成自由的空穴載流子,這一過程所需電離能比本徵半導體情形下產生電子空穴對要小得多。因此這時空穴是多數載流子,雜質半導體主要靠空穴導電,即空穴導電型,稱為p型半導體。在p型半導體中空穴是多數載流子,電子是少數載流子。在半導體器件的各種效應中,少數載流子常扮演重要角色。
⑶ 能做半導體的元素有什麼有什麼化學性質謝謝
在元素周期表中金屬和非金屬的分界處,可以找到半導體材料,如硅、鍺、鎵等
另外還有半導體的特性:
半導體是導電能力介於導體和絕緣體之間的物質。它的重要特性表現在以下幾個方面:
(1)熱敏性 半導體材料的電阻率與溫度有密切的關系。溫度升高,半導體的電阻率會明顯變小。例如純鍺(Ge),溫度每升高10度,其電阻率就會減少到原來的一半。
(2)光電特性 很多半導體材料對光十分敏感,無光照時,不易導電;受到光照時,就變的容易導電了。例如,常用的硫化鎘半導體光敏電阻,在無光照時電阻高達幾十兆歐,受到光照時電阻會減小到幾十千歐。半導體受光照後電阻明顯變小的現象稱為「光導電」。利用光導電特性製作的光電器件還有光電二極體和光電三極體等。
近年來廣泛使用著一種半導體發光器件--發光二極體,它通過電流時能夠發光,把電能直接轉成光能。目前已製作出發黃,綠,紅,藍幾色的發光二極體,以及發出不可見光紅外線的發光二極體。
另一種常見的光電轉換器件是硅光電池,它可以把光能直接轉換成電能,是一種方便的而清潔的能源。
(3)攙雜特性 純凈的半導體材料電阻率很高,但摻入極微量的「雜質」元素後,其導電能力會發生極為顯著的變化。例如,純硅的電阻率為214×1000歐姆/厘米,若摻入百萬分之一的硼元素,電阻率就會減小到0.4歐姆/厘米。因此,人們可以給半導體摻入微量的某種特定的雜質元素,精確控制它的導電能力,用以製作各種各樣的半導體器件。
⑷ 半導體的性質 作用 具有什麼性
以鍺硅合金為例。
1、性質:高頻特性良好,材料安全性佳,導熱性好,而且製程成熟、整合度高,具成本較低之優勢。
2、作用:不但可以直接利用半導體現有200mm 晶圓製程,達到高集成度,據以創造經濟規模,還有媲美GaAs的高速特性。隨著近來IDM 大廠的投入,SiGe 技術已逐步在截止頻率(fT)與擊穿電壓(Breakdown voltage)過低等問題獲得改善而日趨實用。
SiGe既擁有硅工藝的集成度、良率和成本優勢,又具備第3 到第5 類半導體(如砷化鎵(GaAs)和磷化銦(InP))在速度方面的優點。只要增加金屬和介質疊層來降低寄生電容和電感,就可以採用SiGe 半導體技術集成高質量無源部件。
(4)半導體具有什麼性質擴展閱讀:
半導體的導電特性介紹:
導體具有良好的導電特性,常溫下,其內部存在著大量的自由電子,它們在外電場的作用下做定向運動形成較大的電流。因而導體的電阻率很小,只有 金屬一般為導體,如銅、鋁、銀等。
絕緣體幾乎不導電,如橡膠、陶瓷、塑料等。在這類材料中,幾乎沒有自由電子,即使受外電場作用也不會形成電流,所以,絕緣體的電阻率很大,在 以上。
半導體的導電能力介於導體和絕緣體之間,如硅、鍺、硒等,它們的電阻率通常在 之間。半導體之所以得到廣泛應用,是因為它的導電能力受摻雜、溫度和光照的影響十分顯著。
如純凈的半導體單晶硅在室溫下電阻率約為 ,若按百萬分之一的比例摻入少量雜質(如磷)後,其電阻率急劇下降為 ,幾乎降低了一百萬倍。半導體具有這種性能的根本原因在於半導體原子結構的特殊性。
⑸ 半導體晶體的概念,性質和特點是什麼
半導體、絕緣體和導體由禁帶寬度劃分,即導帶與價帶之間的相對位置決定。
1 導體的導帶和價帶基本重合,禁帶寬度為0,電子由價帶進入導帶基本無需額外能量,因此內部存在大量自由電子,具有低電阻率。
2 半導體導帶和價帶距離適中,即禁帶寬度適中,因此價帶中的電子在常見能量級別的激勵下,例如光、熱和電壓,即可進入導帶,導致半導體電阻率變化。
3 絕緣體與半導體類同,但禁帶寬度很寬,需要大量能量才能導電,例如高於5000V的高壓電,因此電阻率很高。光和熱通常無法導致絕緣體導電,絕緣體一般耐熱性不高,能導致電子躍遷到導帶的溫度下,大部分碳基絕緣體已經碳化,其餘絕緣體已經熔化或氣化。
⑹ 相比於其他物質,半導體具有哪三種特殊的導電性質
半導體因摻雜不同使得導電原理不同,半導體的導電是通過摻雜實現的。
如Si 是目前專集成電路屬中常用的材料,最外層電子是4個。
1、通過摻雜B(最外層3個電子),可以形成受主能級,讓價帶產生大量空穴,從而實現導電,這是第一種:P型半導體。根據電中性原理(Nd ≈ n ,其中Nd為受主能級的電離雜質濃度)。
2、通過摻雜P(最外層4個電子),可以形成施主能級,讓導帶產生大量電子,從而實現導電,這是第二種:N型半導體。根據電中性原理(Na ≈ p ,其中Na為施主能級的電離雜質濃度)。
3、不摻雜,既為本徵半導體,自由移動的電子與空穴成對出現ni^2=n * p ; n = p,所以n、p的量均較小。所以本徵半導體不導電或者說電導率很低。
⑺ 半導體中電子有效質量的性質是什麼
有效質量並不代表真正的質量,而是代表能帶中電子受外力時,外力與加速度的一個比例系數(在准經典近似中,晶體電子在外力F*作用下具有加速度a*,所以參照牛頓第二定律定義的m*=F*/a*稱作慣性質量)。
⑻ 什麼是P型半導體和N型半導體都有哪些性質呢
P型半導體
多數載流子為空穴的半導體。
型半導體中,空穴為多子,自由電子為少子,主要靠空穴導電。由於P型半導體中正電荷量與負電荷量相等,故P型半導體呈電中性。空穴主要由雜質原子提供,自由電子由熱激發形成。摻入的雜質越多,多子(空穴)的濃度就越高,導電性能就越強。
N型半導體
多數載流子為電子的半導體
也稱為電子型半導體。N型半導體即自由電子濃度遠大於空穴濃度的雜質半導體。
在純凈的硅晶體中摻入Ⅴ族元素(如磷、砷、銻等),使之取代晶格中硅原子的位置,就形成了N型半導體。這類雜質提供了帶負電(Negative)的電子載流子,稱他們為施主雜質或n型雜質。在N型半導體中,自由電子為多子,空穴為少子,主要靠自由電子導電,由於N型半導體中正電荷量與負電荷量相等,故N型半導體呈電中性。自由電子主要由雜質原子提供,空穴由熱激發形成。摻入的雜質越多,多子(自由電子)的濃度就越高,導電性能就越強。
⑼ 半導體主要有哪些特性
半導體的特徵:
一、半導體的導電能力介於導體和絕緣體之間,如硅、鍺、硒等,它們的電阻率通常在 之間。
二、半導體之所以得到廣泛應用,是因為它的導電能力受摻雜、溫度和光照的影響十分顯著。
三、如純凈的半導體單晶硅在室溫下電阻率約為 ,若按百萬分之一的比例摻入少量雜質(如磷)後,其電阻率急劇下降為 ,幾乎降低了一百萬倍。半導體具有這種性能的根本原因在於半導體原子結構的特殊性。
常用的半導體材料是單晶硅(Si)和單晶鍺(Ge)。所謂單晶,是指整塊晶體中的原子按一定規則整齊地排列著的晶體。非常純凈的單晶半導體稱為本徵半導體。
(9)半導體具有什麼性質擴展閱讀
一、本徵半導體的原子結構
半導體鍺和硅都是四價元素,其原子結構示意圖如圖Z0102所示。它們的最外層都有4個電子,帶4個單位負電荷。通常把原子核和內層電子看作一個整體,稱為慣性核。
慣性核帶有4個單位正電荷,最外層有4個價電子帶有4個單位負電荷,因此,整個原子為電中性。
二、應用
1、在無線電收音機及電視機中,作為「訊號放大器/整流器」用。
2、半導體可以用來測量溫度,測溫范圍可以達到生產、生活、醫療衛生、科研教學等應用的70%的領域,有較高的准確度和穩定性,解析度可達0.1℃,甚至達到0.01℃也不是不可能,線性度0.2%,測溫范圍-100~+300℃,是性價比極高的一種測溫元件。
3、半導體致冷器的發展, 它也叫熱電致冷器或溫差致冷器, 它採用了帕爾貼效應.
⑽ 半導體材料的性質
以非晶態半導體材料為主體製成的固態電子器件。非晶態半導體雖然在整體上分子排列無序,但是仍具有單晶體的微觀結構,因此具有許多特殊的性質。1975年,英國W.G.斯皮爾在輝光放電分解硅烷法制備的非晶硅薄膜中摻雜成功,使非晶硅薄膜的電阻率變化10個數量級,促進非晶態半導體器件的開發和應用。同單晶材料相比,非晶態半導體材料制備工藝簡單,對襯底結構無特殊要求,易於大面積生長,摻雜後電阻率變化大,可以製成多種器件。非晶硅太陽能電池吸收系數大,轉換效率高,面積大,已應用到計算器、電子表等商品中。非晶硅薄膜場效應管陣列可用作大面積液晶平面顯示屏的定址開關。利用某些硫系非晶態半導體材料的結構轉變來記錄和存儲光電信息的器件已應用於計算機或控制系統中。利用非晶態薄膜的電荷存儲和光電導特性可製成用於靜態圖像光電轉換的靜電復印機感光體和用於動態圖像光電轉換的電視攝像管的靶面。
具有半導體性質的非晶態材料。非晶態半導體是半導體的一個重要部分。50年代B.T.科洛米耶茨等人開始了對硫系玻璃的研究,當時很少有人注意,直到1968年S.R.奧弗申斯基關於用硫系薄膜製作開關器件的專利發表以後,才引起人們對非晶態半導體的興趣。1975年W.E.斯皮爾等人在硅烷輝光放電分解制備的非晶硅中實現了摻雜效應,使控制電導和製造PN結成為可能,從而為非晶硅材料的應用開辟了廣闊的前景。在理論方面,P.W.安德森和莫脫,N.F.建立了非晶態半導體的電子理論,並因而榮獲1977年的諾貝爾物理學獎。目前無論在理論方面,還是在應用方面,非晶態半導體的研究正在很快地發展著。
分類 目前主要的非晶態半導體有兩大類。
硫系玻璃。含硫族元素的非晶態半導體。例如As-Se、As-S,通常的制備方法是熔體冷卻或汽相沉積。
四面體鍵非晶態半導體。如非晶Si、Ge、GaAs等,此類材料的非晶態不能用熔體冷卻的辦法來獲得,只能用薄膜淀積的辦法(如蒸發、濺射、輝光放電或化學汽相淀積等),只要襯底溫度足夠低,淀積的薄膜就是非晶態結構。四面體鍵非晶態半導體材料的性質,與制備的工藝方法和工藝條件密切相關。圖1 不同方法制備非晶硅的光吸收系數 給出了不同制備工藝的非晶硅光吸收系數譜,其中a、b制備工藝是硅烷輝光放電分解,襯底溫度分別為500K和300K,c制備工藝是濺射,d制備工藝為蒸發。非晶硅的導電性質和光電導性質也與制備工藝密切相關。其實,硅烷輝光放電法制備的非晶硅中,含有大量H,有時又稱為非晶的硅氫合金;不同工藝條件,氫含量不同,直接影響到材料的性質。與此相反,硫系玻璃的性質與制備方法關系不大。圖2 汽相淀積濺射薄膜和熔體急冷成塊體AsSeTe的光吸收系數譜 給出了一個典型的實例,用熔體冷卻和濺射的辦法制備的AsSeTe樣品,它們的光吸收系數譜具有相同的曲線。
非晶態半導體的電子結構 非晶態與晶態半導體具有類似的基本能帶結構,也有導帶、價帶和禁帶(見固體的能帶)。材料的基本能帶結構主要取決於原子附近的狀況,可以用化學鍵模型作定性的解釋。以四面體鍵的非晶Ge、Si為例,Ge、Si中四個價電子經sp雜化,近鄰原子的價電子之間形成共價鍵,其成鍵態對應於價帶;反鍵態對應於導帶。無論是Ge、Si的晶態還是非晶態,基本結合方式是相同的,只是在非晶態中鍵角和鍵長有一定程度的畸變,因而它們的基本能帶結構是相類似的。然而,非晶態半導體中的電子態與晶態比較也有著本質的區別。晶態半導體的結構是周期有序的,或者說具有平移對稱性,電子波函數是布洛赫函數,波矢是與平移對稱性相聯系的量子數,非晶態半導體不存在有周期性, 不再是好的量子數。晶態半導體中電子的運動是比較自由的,電子運動的平均自由程遠大於原子間距;非晶態半導體中結構缺陷的畸變使得電子的平均自由程大大減小,當平均自由程接近原子間距的數量級時,在晶態半導體中建立起來的電子漂移運動的概念就變得沒有意義了。非晶態半導體能帶邊態密度的變化不像晶態那樣陡,而是拖有不同程度的帶尾(如圖3 非晶態半導體的態密度與能量的關系 所示)。非晶態半導體能帶中的電子態分為兩類:一類稱為擴展態,另一類為局域態。處在擴展態的每個電子,為整個固體所共有,可以在固體整個尺度內找到;它在外場中運動類似於晶體中的電子;處在局域態的每個電子基本局限在某一區域,它的狀態波函數只能在圍繞某一點的一個不大尺度內顯著不為零,它們需要靠聲子的協助,進行跳躍式導電。在一個能帶中,帶中心部分為擴展態,帶尾部分為局域態,它們之間有一分界處,如圖4 非晶態半導體的擴展態、局域態和遷移率邊 中的和,這個分界處稱為遷移率邊。1960年莫脫首先提出了遷移率邊的概念。如果把遷移率看成是電子態能量的函數,莫脫認為在分界處和存在有遷移率的突變。局域態中的電子是跳躍式導電的,依靠與點陣振動交換能量,從一個局域態跳到另一個局域態,因而當溫度趨向0K時,局域態電子遷移率趨於零。擴展態中電子導電類似於晶體中的電子,當趨於0K時,遷移率趨向有限值。莫脫進一步認為遷移率邊對應於電子平均自由程接近於原子間距的情況,並定義這種情況下的電導率為最小金屬化電導率。然而,目前圍繞著遷移率邊和最小金屬化電導率仍有爭論。
缺陷 非晶態半導體與晶態相比較,其中存在大量的缺陷。這些缺陷在禁帶之中引入一系列局域能級,它們對非晶態半導體的電學和光學性質有著重要的影響。四面體鍵非晶態半導體和硫系玻璃,這兩類非晶態半導體的缺陷有著顯著的差別。
非晶硅中的缺陷主要是空位、微空洞。硅原子外層有四個價電子,正常情況應與近鄰的四個硅原子形成四個共價鍵。存在有空位和微空洞使得有些硅原子周圍四個近鄰原子不足,而產生一些懸掛鍵,在中性懸掛鍵上有一個未成鍵的電子。懸掛鍵還有兩種可能的帶電狀態:釋放未成鍵的電子成為正電中心,這是施主態;接受第二個電子成為負電中心,這是受主態。它們對應的能級在禁帶之中,分別稱為施主和受主能級。因為受主態表示懸掛鍵上有兩個電子占據的情況,兩個電子間的庫侖排斥作用,使得受主能級位置高於施主能級,稱為正相關能。因此在一般情況下,懸掛鍵保持只有一個電子占據的中性狀態,在實驗中觀察到懸掛鍵上未配對電子的自旋共振。1975年斯皮爾等人利用硅烷輝光放電的方法,首先實現非晶硅的摻雜效應,就是因為用這種辦法制備的非晶硅中含有大量的氫,氫與懸掛鍵結合大大減少了缺陷態的數目。這些缺陷同時是有效的復合中心。為了提高非平衡載流子的壽命,也必須降低缺陷態密度。因此,控制非晶硅中的缺陷,成為目前材料制備中的關鍵問題之一。
硫系玻璃中缺陷的形式不是簡單的懸掛鍵,而是「換價對」。最初,人們發現硫系玻璃與非晶硅不同,觀察不到缺陷態上電子的自旋共振,針對這表面上的反常現象,莫脫等人根據安德森的負相關能的設想,提出了MDS模型。當缺陷態上占據兩個電子時,會引起點陣的畸變,若由於畸變降低的能量超過電子間庫侖排斥作用能,則表現出有負的相關能,這就意味著受主能級位於施主能級之下。用 D、D、D 分別代表缺陷上不佔有、佔有一個、佔有兩個電子的狀態,負相關能意味著:
2D —→ D+D
是放熱的。因而缺陷主要以D、D形式存在,不存在未配對電子,所以沒有電子的自旋共振。不少人對D、D、D缺陷的結構作了分析。以非晶態硒為例,硒有六個價電子,可以形成兩個共價鍵,通常呈鏈狀結構,另外有兩個未成鍵的 p電子稱為孤對電子。在鏈的端點處相當於有一個中性懸掛鍵,這個懸掛鍵很可能發生畸變,與鄰近的孤對電子成鍵並放出一個電子(形成D),放出的電子與另一懸掛鍵結合成一對孤對電子(形成D),如圖 5 硫系玻璃的換價對 所示。因此又稱這種D、D為換價對。由於庫侖吸引作用,使得D、D通常是成對地緊密靠在一起,形成緊密換價對。硫系玻璃中成鍵方式只要有很小變化就可以形成一組緊密換價對,如圖6 換價對的自增強效應 所示,它只需很小的能量,有自增強效應,因而這種缺陷的濃度通常是很高的。利用換價對模型可以解釋硫屬非晶態半導體的光致發光光譜、光致電子自旋共振等一系列實驗現象。
應用 非晶態半導體在技術領域中的應用存在著很大的潛力,非晶硫早已廣泛應用在復印技術中,由S.R.奧夫辛斯基首創的 As-Te-Ge-Si系玻璃半導體製作的電可改寫主讀存儲器已有商品生產,利用光脈沖使碲微晶薄膜玻璃化這種性質製作的光存儲器正在研製之中。對於非晶硅的應用目前研究最多的是太陽能電池。非晶硅比晶體硅制備工藝簡單,易於做成大面積,非晶硅對於太陽光的吸收效率高,器件只需大約1微米厚的薄膜材料,因此,可望做成一種廉價的太陽能電池,現已受到能源專家的重視。最近已有人試驗把非晶硅場效應晶體管用於液晶顯示和集成電路。