半導體晶元有哪些用途
⑴ 半導體IC晶元是什麼,有什麼用途,
IC就是集成電路的簡來稱。其用途就源廣泛了,現在所有電子產品裡面都有IC,具體作用包括從控制到演算法到介面到存儲所有的電子應用。了解集成電路就需要了解電路,了解電路就需要了解模擬和數字電路。基礎的東西了解了,用途就了解了。
⑵ 半導體的應用領域有哪些
半導體一般指硅晶體,它的導電性介於導體和絕緣體之間.
半導體是指導版電能力介於金權屬和絕緣體之間的固體材料.按內部電子結構區分,半導體與絕緣體相似,它們所含的價電子數恰好能填滿價帶,並由禁帶和上面的導帶隔開.半導體與絕緣體的區別是禁帶較窄,在2~3電子伏以下.
典型的半導體是以共價鍵結合為主的,比如晶體硅和鍺.半導體靠導帶中的電子或價帶中的空穴導電.它的導電性一般通過摻入雜質原子取代原來的原子來控制.摻入的原子如果比原來的原子多一個價電子,則產生電子導電;如果摻入的雜質原子比原來的原子少一個價電子,則產生空穴導電.
半導體的應用十分廣泛,主要是製成有特殊功能的元器件,如晶體管、集成電路、整流器、激光器以及各種光電探測器件、微波器件等.
⑶ 什麼叫半導體具體有哪些用圖和作用
半導體的導電性能介於導體和絕緣體之間,不摻雜的半導體(也叫本徵半導體)專的導電性能很差,但摻雜後屬的半導體就有一定的導電性能了,例如在Si半導體中摻雜P或者B等雜質就可以使半導體變成N型或P型半導體。N型半導體中電子是多數載流子,而P型半導體中空穴是多數載流子。
半導體製成的PN結具有單向導電特性,但當PN結兩端加上足夠大的反向電壓時,PN結會反向擊穿,這時的電壓叫做反向擊穿電壓。利用反向擊穿特性,可以製成穩壓二極體,利用正向特性,可以製成整流或檢波二極體。
半導體的用途太多了,一句兩句很難將清楚,這里就先介紹這些了。
⑷ 半導體晶元是一種什麼新型材料,它有哪些作用
半導體的材料:常溫下導電性能介於導體(conctor)與絕緣體(insulator)之間的材料。半導體按化學成分可分為元素半導體和化合物半導體兩大類。鍺和硅是最常用的元素半導體;化合物半導體包括第Ⅲ和第Ⅴ族化合物(砷化鎵、磷化鎵等)、第Ⅱ和第Ⅵ族化合物( 硫化鎘、硫化鋅等)、氧化物(錳、鉻、鐵、銅的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物組成的固溶體(鎵鋁砷、鎵砷磷等)。除上述晶態半導體外,還有非晶態的玻璃半導體、有機半導體等。
半導體的作用:
(1)集成電路 它是半導體技術發展中最活躍的一個領域,已發展到大規模集成的階段。在幾平方毫米的矽片上能製作幾萬只晶體管,可在一片矽片上製成一台微信息處理器,或完成其它較復雜的電路功能。集成電路的發展方向是實現更高的集成度和微功耗,並使信息處理速度達到微微秒級。(2)微波器件半導體微波器件包括接收、控制和發射器件等。毫米波段以下的接收器件已廣泛使用。在厘米波段,發射器件的功率已達到數瓦,人們正在通過研製新器件、發展新技術來獲得更大的輸出功率。
(3)光電子器件 半導體發光、攝象器件和激光器件的發展使光電子器件成為一個重要的領域。它們的應用范圍主要是:光通信、數碼顯示、圖象接收、光集成等。
半導體的特點:
(1)電阻率的變化受雜質含量的影響極大。例如,硅中只含有億分之一的硼,電阻率就會下降到原來的千分之一。如果所含雜質的類型不同,導電類型也不同。由此可見,半導體的導電性與所含的微量雜質有著非常密切的關系。(2)電阻率受外界條件(如熱、光等)的影響很大。溫度升高或受光照射時均可使電阻率迅速下降。一些特殊的半導體在電場或磁場的作用下,電阻率也會發生改變。
⑸ 半導體都有哪些應用
半導體指常溫下導電性能介於導體與絕緣體之間的材料。半導體在消費電子、通信系統、醫療儀器等領域有廣泛應用。如二極體就是採用半導體製作的器件。無論從科技或是經濟發展的角度來看,半導體的重要性都是非常巨大的。今日大部分的電子產品,如計算機、行動電話或是數字錄音機當中的核心單元都和半導體有著極為密切的關連。常見的半導體材料有硅、鍺、砷化鎵等,而硅更是各種半導體材料中,在商業應用上最具有影響力的一種。
半導體應用
光伏應用
半導體材料光生伏特效應是太陽能電池運行的基本原理。現階段半導體材料的光伏應用已經成為一大熱門 ,是目前世界上增長最快、發展最好的清潔能源市場。太陽能電池的主要製作材料是半導體材料,判斷太陽能電池的優劣主要的標準是光電轉化率,光電轉化率越高 ,說明太陽能電池的工作效率越高。根據應用的半導體材料的不同 ,太陽能電池分為晶體硅太陽能電池、薄膜電池以及III-V族化合物電池。
照明應用
LED是建立在半導體晶體管上的半導體發光二極體,採用LED技術半導體光源體積小,可以實現平面封裝,工作時發熱量低、節能高效,產品壽命長、反應速度快,而且綠色環保無污染,還能開發成輕薄短小的產品 ,一經問世 ,就迅速普及,成為新一代的優質照明光源,目前已經廣泛的運用在我們的生活中。如交通指示燈、電子產品的背光源、城市夜景美化光源、室內照明等各個領域 ,都有應用。
大功率電源轉換
交流電和直流電的相互轉換對於電器的使用十分重要 ,是對電器的必要保護。這就要用到等電源轉換裝置。碳化硅擊穿電壓強度高 ,禁帶寬度寬,熱導性高,因此SiC半導體器件十分適合應用在功率密度和開關頻率高的場合,電源裝換裝置就是其中之一。碳化硅元件在高溫、高壓、高頻的又一表現使得現在被廣泛使用到深井鑽探,發電裝置中國的逆變器,電氣混動汽車的能量轉化器,輕軌列車牽引動力轉換等領域。由於SiC本身的優勢以及現階段行業對於輕量化、高轉換效率的半導體材料需要,SiC將會取代Si,成為應用最廣泛的半導體材料。
⑹ 什麼是晶元,晶元有什麼作用
晶元為半導體元件產品的統稱(在集成電路上的載體),集成電路英語:integrated circuit,縮寫作 IC;或稱微電路(microcircuit)、微晶元(microchip)、晶片/晶元(chip)在電子學中是一種將電路(主要包括半導體設備,也包括被動組件等)小型化的方式,並時常製造在半導體晶圓表面上。
晶元作用:可以控制計算機到手機到數字微波爐的一切。雖然設計開發一個復雜集成電路的成本非常高,但是當分散到通常以百萬計的產品上,每個集成電路的成本最小化。集成電路的性能很高,因為小尺寸帶來短路徑,使得低功率邏輯電路可以在快速開關速度應用。
(6)半導體晶元有哪些用途擴展閱讀:
晶元舉例:中國芯-龍芯系列
龍芯系列通用處理器是我國自主研製的通用處理器,對維護我國的信息安全具有重要的意義。此前,我國使用的通用處理器絕大多數是美國英特爾公司和AMD公司生產的。
由於處理器中包含有數千萬個至數億個電子元件,每個電子元件在處理器中具有什麼功能、起著什麼作用很難說清楚,也就是說處理器的技術透明度非常低,在技術上;
國外公司完全有可能在出口到我國的處理器中植入可用特定手段激活的破壞性或間諜性指令,一旦出現非常情況,這些指令就有可能被激活,進而會使我國陷入被動之中。龍芯系列通用處理器的研製成功將解決上述問題
⑺ 半導體有哪些常見的應用
半導體一般指硅晶體,它的導電性介於導體和絕緣體之間。
半導體是指導電能力介回於金屬和絕緣體答之間的固體材料。按內部電子結構區分,半導體與絕緣體相似,它們所含的價電子數恰好能填滿價帶,並由禁帶和上面的導帶隔開。半導體與絕緣體的區別是禁帶較窄,在2~3電子伏以下。
典型的半導體是以共價鍵結合為主的,比如晶體硅和鍺。半導體靠導帶中的電子或價帶中的空穴導電。它的導電性一般通過摻入雜質原子取代原來的原子來控制。摻入的原子如果比原來的原子多一個價電子,則產生電子導電;如果摻入的雜質原子比原來的原子少一個價電子,則產生空穴導電。
半導體的應用十分廣泛,主要是製成有特殊功能的元器件,如晶體管、集成電路、整流器、激光器以及各種光電探測器件、微波器件等。
⑻ 半導體有哪些用途
半導體的用途:
用半導體材料製成的部件、集成電路等是電子工業的重要基礎產品,在電子技術的各個方面已大量使用。半導體材料、器件、集成電路的生產和科研已成為電子工業的重要組成部分。在新產品研製及新技術發展方面,比較重要的領域有:
1、集成電路
它是半導體技術發展中最活躍的一個領域,已發展到大規模集成的階段。在幾平方毫米的矽片上能製作幾萬只晶體管,可在一片矽片上製成一台微信息處理器,或完成其它較復雜的電路功能。集成電路的發展方向是實現更高的集成度和微功耗,並使信息處理速度達到微微秒級。
2、微波器件
半導體微波器件包括接收、控制和發射器件等。毫米波段以下的接收器件已廣泛使用。在厘米波段,發射器件的功率已達到數瓦,人們正在通過研製新器件、發展新技術來獲得更大的輸出功率。
3、光電子器件
半導體發光、攝象器件和激光器件的發展使光電子器件成為一個重要的領域。它們的應用范圍主要是:光通信、數碼顯示、圖象接收、光集成等。
定義:
半導體( semiconctor),指常溫下導電性能介於導體(conctor)與絕緣體(insulator)之間的材料。
分類:
按化學成分可分為元素半導體和化合物半導體兩大類。鍺和硅是最常用的元素半導體;化合物半導體包括第Ⅲ和第Ⅴ族化合物(砷化鎵、磷化鎵等)、第Ⅱ和第Ⅵ族化合物( 硫化鎘、硫化鋅等)、氧化物(錳、鉻、鐵、銅的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物組成的固溶體(鎵鋁砷、鎵砷磷等)。
按照其製造技術可以分為:集成電路器件,分立器件、光電半導體、邏輯IC、模擬IC、儲存器等大類,一般來說這些還會被分成小類。此外還有以應用領域、設計方法等進行分類,雖然不常用,但還是按照IC、LSI、VLSI(超大LSI)及其規模進行分類的方法。此外,還有按照其所處理的信號,可以分成模擬、數字、模擬數字混成及功能進行分類的方法。
特點:
半導體五大特性∶摻雜性,熱敏性,光敏性,負電阻率溫度特性,整流特性。