生物復合材料有哪些
『壹』 生物高分子材料有哪些
生物高分子材料也稱為生物醫學材料,是指以醫療為目的,用於與生物組織接觸以形成功能的無生命的材料。主要包括生物醫用高分子材料、生物醫用陶瓷材料、生物醫用金屬材料和生物醫用復合材料等。研究領域涉及材料學、化學、醫學、生命科學,生物醫用高分子材料是一門介於現代醫學和高分子科學之間的新興學科。它涉及到物理學、化學、生物化學、病理學、血液學等多種邊緣學科。目前醫用高分子材料的應用已遍及整個醫學領域(如:人工器官、外科修復、理療康復、診斷治療等)。
由於醫用高分子材料可以通過組成和結構的控制而使材料具有不同的物理和化學性質,以滿足不同的需求,耐生物老化,作為長期植入材料具有良好的生物穩定性和物理、機械性能,易加工成型,原料易得,便於消毒滅菌,因此受到人們普遍關注,已成為生物材料中用途最廣、用量最大的品種,近年來發展需求量增長十分迅速。醫用高分子材料的研究目前仍然處於經驗和半經驗階段,還沒有能夠建立在分子設計的基礎上,以材料的結構與性能關系,材料的化學組成、表面性質和生命體組織的相容性之間的關系為依據來研究開發新材料。目前全世界應用的有90多個品種,西方國家消耗的醫用高分子材料每年以10%~20%的速度增長。隨著人民生活水平的提高和對生命質量的追求,我國對醫用高分子材料的需求也會不斷增加。
合成高分子材料因與人體器官組織的天然高分子有著極其相似的化學結構和物理性能,因而可以植入人體,部分或全部取代有關器官。因此,在現代醫學領域得到了最為廣泛的應用,成為現代醫學的重要支柱材料。當前研究主要集中在外科置入件用高分子材料和生物降解及葯物控制釋放材料。
外科置入件用高分子材料耐生物老化,作為長期置入材料具有良好的生物穩定性和物理、機械性能,易於加工成型,原料易得,便於消毒,受到人們普遍的關注,這類材料主要用於生物體軟、硬組織修復體、人工器官、人工血管、接觸鏡、膜材、粘結劑和空腔製品諸方面。其特點是大多數不具有生物活性,與組織不易牢固結合,易導致毒性、過敏性等反應。不過作為承重的植入件用高分子材料還有許多方面的問題,目前研究主要集中在提高材料的對生物體的安全性;提高組織相容性和血液相容性;改善生物學性能,改善提高力學、機械、物理性能。在生物膜材料方面,屬於線性高分子多糖結構的殼聚糖是甲殼質脫乙醯基的衍生物,無毒、無抗原性,可在生物體內自行降解.殼聚糖膜有促進創面癒合的作用,具有良好通透性,且含有游離氨基,能結合酸分子,是天然多糖中唯一的鹼性多糖。因而具有許多特殊的物理化學性質和生理功能,在醫學生物材料上可作為人工腎膜和人造皮膚。
生物降解型醫用高分子材料的主要成分是聚乳酸、聚乙烯醇及改性的天然多糖和蛋白質等,在臨床上主要用於暫時執行替換組織和器官的功能,或作葯物緩釋系統和送達載體、可吸收性外科縫線、創傷敷料等。其特點是易降解,降解產物經代謝排出體外,對組織生長無影響,目前已成為醫用高分子材料發展的方向。
高分子葯物控制釋放體系不僅能提高葯效,簡化給葯方式,大大降低了葯物的毒副作用,而且納米靶向控制釋放體系使葯物在預定的部位,按設計的劑量,在需要的時間范圍內以一定的速度在體內緩慢釋放,而達到治療某種疾病或調節生育的目的,比如高分子多肽或蛋白葯物控制釋放體系新的研究進展,為那些口服無效的多肽或蛋白葯物的臨床應用,展示了令人鼓舞的前景。
『貳』 復合材料有幾類主要應用是什麼
復合材料是一種混合物。復合材料按其組成分為金屬與金屬復合材料、非金屬與金屬復合材料、非金屬與非金屬復合材料。按其結構特點又分為:①纖維復合材料。將各種纖維增強體置於基體材料內復合而成。如纖維增強塑料、纖維增強金屬等。②夾層復合材料。由性質不同的表面材料和芯材組合而成。通常面材強度高、薄;芯材質輕、強度低,但具有一定剛度和厚度。分為實心夾層和蜂窩夾層兩種。③細粒復合材料。將硬質細粒均勻分布於基體中,如彌散強化合金、金屬陶瓷等。④混雜復合材料。由兩種或兩種以上增強相材料混雜於一種基體相材料中構成。與普通單增強相復合材料比,其沖擊強度、疲勞強度和斷裂韌性顯著提高,並具有特殊的熱膨脹性能。分為層內混雜、層間混雜、夾芯混雜、層內/層間混雜和超混雜復合材料
復合材料的主要應用領域有:①航空航天領域。由於復合材料熱穩定性好,比強度、比剛度高,可用於製造飛機機翼和前機身、衛星天線及其支撐結構、太陽能電池翼和外殼、大型運載火箭的殼體、發動機殼體、太空梭結構件等。②汽車工業。由於復合材料具有特殊的振動阻尼特性,可減振和降低雜訊、抗疲勞性能好,損傷後易修理,便於整體成形,故可用於製造汽車車身、受力構件、傳動軸、發動機架及其內部構件。③化工、紡織和機械製造領域。有良好耐蝕性的碳纖維與樹脂基體復合而成的材料,可用於製造化工設備、紡織機、造紙機、復印機、高速機床、精密儀器等。④醫學領域。碳纖維復合材料具有優異的力學性能和不吸收X射線特性,可用於製造醫用X光機和矯形支架等。碳纖維復合材料還具有生物組織相容性和血液相容性,生物環境下穩定性好,也用作生物醫學材料。此外,復合材料還用於製造體育運動器件和用作建築材料等。
『叄』 刻立特生物復合材料作用有哪些
刻立特生物復合材料簡單介紹如下:
刻立特生物復合醫用材料,科學配伍添內加了甲殼素、二氧化硅、容珍珠粉等生物復合醫用材料。共同作用於傷口,該復合醫用材料中的多種治療因子可滲透皮下組織,改善局部的血液循環和組織營養的供給,促進肉芽組織和成纖維細胞的形成。生物光素復合醫用材料與傷切口接觸後將產生高活性物質並被皮下組織吸收,如組(織)胺、類組胺物質、神經介質、組織激素、免疫細胞等,增強細胞組織的修復和再生功能,並且有效地激活多種創傷修復機制。具有良好的消炎、抑菌、止痛、促進傷口癒合、減小瘢痕形成的作用。
『肆』 復合材料都包括哪些方面,哪方面比較好
概念
復合材料(Composite materials),是以一種材料為基體(Matrix),另一種材料為增強體(reinforcement)組合而成的材料。各種材料在性能上互相取長補短,產生協同效應,使復合材料的綜合性能優於原組成材料而滿足各種不同的要求。復合材料的基體材料分為金屬和非金屬兩大類。金屬基體常用的有鋁、鎂、銅、鈦及其合金。非金屬基體主要有合成樹脂、橡膠、陶瓷、石墨、碳等。增強材料主要有玻璃纖維、碳纖維、硼纖維、芳綸纖維、碳化硅纖維、石棉纖維、晶須、金屬絲和硬質細粒等。
復合材料使用的歷史可以追溯到古代。從古至今沿用的稻草增強粘土和已使用上百年的鋼筋混凝土均由兩種材料復合而成。20世紀40年代,因航空工業的需要,發展了玻璃纖維增強塑料(俗稱玻璃鋼),從此出現了復合材料這一名稱。50年代以後,陸續發展了碳纖維、石墨纖維和硼纖維等高強度和高模量纖維。70年代出現了芳綸纖維和碳化硅纖維。這些高強度、高模量纖維能與合成樹脂、碳、石墨、陶瓷、橡膠等非金屬基體或鋁、鎂、鈦等金屬基體復合,構成各具特色的復合材料。
[編輯本段]分類
復合材料按其組成分為金屬與金屬復合材料、非金屬與金屬復合材料、非金屬與非金屬復合材料。按其結構特點又分為:①纖維復合材料。將各種纖維增強體置於基體材料內復合而成。如纖維增強塑料、纖維增強金屬等。②夾層復合材料。由性質不同的表面材料和芯材組合而成。通常面材強度高、薄;芯材質輕、強度低,但具有一定剛度和厚度。分為實心夾層和蜂窩夾層兩種。③細粒復合材料。將硬質細粒均勻分布於基體中,如彌散強化合金、金屬陶瓷等。④混雜復合材料。由兩種或兩種以上增強相材料混雜於一種基體相材料中構成。與普通單增強相復合材料比,其沖擊強度、疲勞強度和斷裂韌性顯著提高,並具有特殊的熱膨脹性能。分為層內混雜、層間混雜、夾芯混雜、層內/層間混雜和超混雜復合材料。
60年代,為滿足航空航天等尖端技術所用材料的需要,先後研製和生產了以高性能纖維(如碳纖維、硼纖維、芳綸纖維、碳化硅纖維等)為增強材料的復合材料,其比強度大於4×106厘米(cm),比模量大於4×108cm。為了與第一代玻璃纖維增強樹脂復合材料相區別,將這種復合材料稱為先進復合材料。按基體材料不同,先進復合材料分為樹脂基、金屬基和陶瓷基復合材料。其使用溫度分別達250~350℃、350~1200℃和1200℃以上。先進復合材料除作為結構材料外,還可用作功能材料,如梯度復合材料(材料的化學和結晶學組成、結構、空隙等在空間連續梯變的功能復合材料)、機敏復合材料(具有感覺、處理和執行功能,能適應環境變化的功能復合材料)、仿生復合材料、隱身復合材料等。
[編輯本段]性能
復合材料中以纖維增強材料應用最廣、用量最大。其特點是比重小、比強度和比模量大。例如碳纖維與環氧樹脂復合的材料,其比強度和比模量均比鋼和鋁合金大數倍,還具有優良的化學穩定性、減摩耐磨、自潤滑、耐熱、耐疲勞、耐蠕變、消聲、電絕緣等性能。石墨纖維與樹脂復合可得到膨脹系數幾乎等於零的材料。纖維增強材料的另一個特點是各向異性,因此可按製件不同部位的強度要求設計纖維的排列。以碳纖維和碳化硅纖維增強的鋁基復合材料,在500℃時仍能保持足夠的強度和模量。碳化硅纖維與鈦復合,不但鈦的耐熱性提高,且耐磨損,可用作發動機風扇葉片。碳化硅纖維與陶瓷復合,使用溫度可達1500℃,比超合金渦輪葉片的使用溫度(1100℃)高得多。碳纖維增強碳、石墨纖維增強碳或石墨纖維增強石墨,構成耐燒蝕材料,已用於航天器、火箭導彈和原子能反應堆中。非金屬基復合材料由於密度小,用於汽車和飛機可減輕重量、提高速度、節約能源。用碳纖維和玻璃纖維混合製成的復合材料片彈簧,其剛度和承載能力與重量大5倍多的鋼片彈簧相當。
[編輯本段]成型方法
復合材料的成型方法按基體材料不同各異。樹脂基復合材料的成型方法較多,有手糊成型、噴射成型、纖維纏繞成型、模壓成型、拉擠成型、RTM成型、熱壓罐成型、隔膜成型、遷移成型、反應注射成型、軟膜膨脹成型、沖壓成型等。金屬基復合材料成型方法分為固相成型法和液相成型法。前者是在低於基體熔點溫度下,通過施加壓力實現成型,包括擴散焊接、粉末冶金、熱軋、熱拔、熱等靜壓和爆炸焊接等。後者是將基體熔化後,充填到增強體材料中,包括傳統鑄造、真空吸鑄、真空反壓鑄造、擠壓鑄造及噴鑄等、陶瓷基復合材料的成型方法主要有固相燒結、化學氣相浸滲成型、化學氣相沉積成型等。
[編輯本段]應用
復合材料的主要應用領域有:①航空航天領域。由於復合材料熱穩定性好,比強度、比剛度高,可用於製造飛機機翼和前機身、衛星天線及其支撐結構、太陽能電池翼和外殼、大型運載火箭的殼體、發動機殼體、太空梭結構件等。②汽車工業。由於復合材料具有特殊的振動阻尼特性,可減振和降低雜訊、抗疲勞性能好,損傷後易修理,便於整體成形,故可用於製造汽車車身、受力構件、傳動軸、發動機架及其內部構件。③化工、紡織和機械製造領域。有良好耐蝕性的碳纖維與樹脂基體復合而成的材料,可用於製造化工設備、紡織機、造紙機、復印機、高速機床、精密儀器等。④醫學領域。碳纖維復合材料具有優異的力學性能和不吸收X射線特性,可用於製造醫用X光機和矯形支架等。碳纖維復合材料還具有生物組織相容性和血液相容性,生物環境下穩定性好,也用作生物醫學材料。此外,復合材料還用於製造體育運動器件和用作建築材料等。
復合材料的發展和應用
復合材料是指由兩種或兩種以上不同物質以不同方式組合而成的材料,它可以發揮各種材料的優點,克服單一材料的缺陷,擴大材料的應用范圍。由於復合材料具有重量輕、強度高、加工成型方便、彈性優良、耐化學腐蝕和耐候性好等特點,已逐步取代木材及金屬合金,廣泛應用於航空航天、汽車、電子電氣、建築、健身器材等領域,在近幾年更是得到了飛速發展。
隨著科技的發展,樹脂與玻璃纖維在技術上不斷進步,生產廠家的製造能力普遍提高,使得玻纖增強復合材料的價格成本已被許多行業接受,但玻纖增強復合材料的強度尚不足以和金屬匹敵。因此,碳纖維、硼纖維等增強復合材料相繼問世,使高分子復合材料家族更加完備,已經成為眾多產業的必備材料。目前全世界復合材料的年產量已達550多萬噸,年產值達1300億美元以上,若將歐、美的軍事航空航天的高價值產品計入,其產值將更為驚人。從全球范圍看,世界復合材料的生產主要集中在歐美和東亞地區。近幾年歐美復合材料產需均持續增長,而亞洲的日本則因經濟不景氣,發展較為緩慢,但中國尤其是中國內地的市場發展迅速。據世界主要復合材料生產商PPG公司統計,2000年歐洲的復合材料全球佔有率約為32%,年產量約200萬噸。與此同時,美國復合材料在20世紀90年代年均增長率約為美國GDP增長率的2倍,達到4%~6%。2000年,美國復合材料的年產量達170萬噸左右。特別是汽車用復合材料的迅速增加使得美國汽車在全球市場上重新崛起。亞洲近幾年復合材料的發展情況與政治經濟的整體變化密切相關,各國的佔有率變化很大。總體而言,亞洲的復合材料仍將繼續增長,2000年的總產量約為145萬噸,預計2005年總產量將達180萬噸。
從應用上看,復合材料在美國和歐洲主要用於航空航天、汽車等行業。2000年美國汽車零件的復合材料用量達14.8萬噸,歐洲汽車復合材料用量到2003年估計可達10.5萬噸。而在日本,復合材料主要用於住宅建設,如衛浴設備等,此類產品在2000年的用量達7.5萬噸,汽車等領域的用量僅為2.4萬噸。不過從全球范圍看,汽車工業是復合材料最大的用戶,今後發展潛力仍十分巨大,目前還有許多新技術正在開發中。例如,為降低發動機雜訊,增加轎車的舒適性,正著力開發兩層冷軋板間粘附熱塑性樹脂的減振鋼板;為滿足發動機向高速、增壓、高負荷方向發展的要求,發動機活塞、連桿、軸瓦已開始應用金屬基復合材料。為滿足汽車輕量化要求,必將會有越來越多的新型復合材料將被應用到汽車製造業中。與此同時,隨著近年來人們對環保問題的日益重視,高分子復合材料取代木材方面的應用也得到了進一步推廣。例如,用植物纖維與廢塑料加工而成的復合材料,在北美已被大量用作托盤和包裝箱,用以替代木製產品;而可降解復合材料也成為國內外開發研究的重點。
另外,納米技術逐漸引起人們的關注,納米復合材料的研究開發也成為新的熱點。以納米改性塑料,可使塑料的聚集態及結晶形態發生改變,從而使之具有新的性能,在克服傳統材料剛性與韌性難以相容的矛盾的同時,大大提高了材料的綜合性能。
樹脂基復合材料的增強材料
樹脂基復合材料採用的增強材料主要有玻璃纖維、碳纖維、芳綸纖維、超高分子量聚乙烯纖維等。
1、玻璃纖維
目前用於高性能復合材料的玻璃纖維主要有高強度玻璃纖維、石英玻璃纖維和高硅氧玻璃纖維等。由於高強度玻璃纖維性價比較高,因此增長率也比較快,年增長率達到10%以上。高強度玻璃纖維復合材料不僅應用在軍用方面,近年來民用產品也有廣泛應用,如防彈頭盔、防彈服、直升飛機機翼、預警機雷達罩、各種高壓壓力容器、民用飛機直板、體育用品、各類耐高溫製品以及近期報道的性能優異的輪胎簾子線等。石英玻璃纖維及高硅氧玻璃纖維屬於耐高溫的玻璃纖維,是比較理想的耐熱防火材料,用其增強酚醛樹脂可製成各種結構的耐高溫、耐燒蝕的復合材料部件,大量應用於火箭、導彈的防熱材料。迄今為止,我國已經實用化的高性能樹脂基復合材料用的碳纖維、芳綸纖維、高強度玻璃纖維三大增強纖維中,只有高強度玻璃纖維已達到國際先進水平,且擁有自主知識產權,形成了小規模的產業,現階段年產可達500噸。
2、碳纖維
碳纖維具有強度高、模量高、耐高溫、導電等一系列性能,首先在航空航天領域得到廣泛應用,近年來在運動器具和體育用品方面也廣泛採用。據預測,土木建築、交通運輸、汽車、能源等領域將會大規模採用工業級碳纖維。1997~2000年間,宇航用碳纖維的年增長率估計為31%,而工業用碳纖維的年增長率估計會達到130%。我國的碳纖維總體水平還比較低,相當於國外七十年代中、末期水平,與國外差距達20年左右。國產碳纖維的主要問題是性能不太穩定且離散系數大、無高性能碳纖維、品種單一、規格不全、連續長度不夠、未經表面處理、價格偏高等。
3、芳綸纖維
20世紀80年代以來,荷蘭、日本、前蘇聯也先後開展了芳綸纖維的研製開發工作。日本及俄羅斯的芳綸纖維已投入市場,年增長速度也達到20%左右。芳綸纖維比強度、比模量較高,因此被廣泛應用於航空航天領域的高性能復合材料零部件(如火箭發動機殼體、飛機發動機艙、整流罩、方向舵等)、艦船(如航空母艦、核潛艇、遊艇、救生艇等)、汽車(如輪胎簾子線、高壓軟管、摩擦材料、高壓氣瓶等)以及耐熱運輸帶、體育運動器材等。
4、超高分子量聚乙烯纖維
超高分子量聚乙烯纖維的比強度在各種纖維中位居第一,尤其是它的抗化學試劑侵蝕性能和抗老化性能優良。它還具有優良的高頻聲納透過性和耐海水腐蝕性,許多國家已用它來製造艦艇的高頻聲納導流罩,大大提高了艦艇的探雷、掃雷能力。除在軍事領域,在汽車製造、船舶製造、醫療器械、體育運動器材等領域超高分子量聚乙烯纖維也有廣闊的應用前景。該纖維一經問世就引起了世界發達國家的極大興趣和重視。
5、熱固性樹脂基復合材料
熱固性樹脂基復合材料是指以熱固性樹脂如不飽和聚酯樹脂、環氧樹脂、酚醛樹脂、乙烯基酯樹脂等為基體,以玻璃纖維、碳纖維、芳綸纖維、超高分子量聚乙烯纖維等為增強材料製成的復合材料。環氧樹脂的特點是具有優良的化學穩定性、電絕緣性、耐腐蝕性、良好的粘接性能和較高的機械強度,廣泛應用於化工、輕工、機械、電子、水利、交通、汽車、家電和宇航等各個領域。1993年世界環氧樹脂生產能力為130萬噸,1996年遞增到143萬噸,1997年為148萬噸,1999年150萬噸,2003年達到180萬噸左右。我國從1975年開始研究環氧樹脂,據不完全統計,目前我國環氧樹脂生產企業約有170多家,總生產能力為50多萬噸,設備利用率為80%左右。酚醛樹脂具有耐熱性、耐磨擦性、機械強度高、電絕緣性優異、低發煙性和耐酸性優異等特點,因而在復合材料產業的各個領域得到廣泛的應用。1997年全球酚醛樹脂的產量為300萬噸,其中美國為164萬噸。我國的產量為18萬噸,進口4萬噸。乙烯基酯樹脂是20世紀60年代發展起來的一類新型熱固性樹脂,其特點是耐腐蝕性好,耐溶劑性好,機械強度高,延伸率大,與金屬、塑料、混凝土等材料的粘結性能好,耐疲勞性能好,電性能佳,耐熱老化,固化收縮率低,可常溫固化也可加熱固化。南京金陵帝斯曼樹脂有限公司引進荷蘭Atlac系列強耐腐蝕性乙烯基酯樹脂,已廣泛用於貯罐、容器、管道等,有的品種還能用於防水和熱壓成型。南京聚隆復合材料有限公司、上海新華樹脂廠、南通明佳聚合物有限公司等廠家也生產乙烯基酯樹脂。
1971年以前我國的熱固性樹脂基復合材料工業主要是軍工產品,70年代後開始轉向民用。從1987年起,各地大量引進國外先進技術如池窯拉絲、短切氈、表面氈生產線及各種牌號的聚酯樹脂(美、德、荷、英、意、日)和環氧樹脂(日、德)生產技術;在成型工藝方面,引進了纏繞管、罐生產線、拉擠工藝生產線、SMC生產線、連續制板機組、樹脂傳遞模塑(RTM)成型機、噴射成型技術、樹脂注射成型技術及漁竿生產線等,形成了從研究、設計、生產及原材料配套的完整的工業體系,截止2000年底,我國熱固性樹脂基復合材料生產企業達3000多家,已有51家通過ISO9000質量體系認證,產品品種3000多種,總產量達73萬噸/年,居世界第二位。產品主要用於建築、防腐、輕工、交通運輸、造船等工業領域。在建築方面,有內外牆板、透明瓦、冷卻塔、空調罩、風機、玻璃鋼水箱、衛生潔具、凈化槽等;在石油化工方面,主要用於管道及貯罐;在交通運輸方面,汽車上主要有車身、引擎蓋、保險杠等配件,火車上有車廂板、門窗、座椅等,船艇方面主要有氣墊船、救生艇、偵察艇、漁船等;在機械及電器領域如屋頂風機、軸流風機、電纜橋架、絕緣棒、集成電路板等產品都具有相當的規模;在航空航天及軍事領域,輕型飛機、尾翼、衛星天線、火箭噴管、防彈板、防彈衣、魚雷等都取得了重大突破。
熱塑性樹脂基復合材料
熱塑性樹脂基復合材料是20世紀80年代發展起來的,主要有長纖維增強粒料(LFP)、連續纖維增強預浸帶(MITT)和玻璃纖維氈增強型熱塑性復合材料(GMT)。根據使用要求不同,樹脂基體主要有PP、PE、PA、PBT、PEI、PC、PES、PEEK、PI、PAI等熱塑性工程塑料,纖維種類包括玻璃纖維、碳纖維、芳綸纖維和硼纖維等一切可能的纖維品種。隨著熱塑性樹脂基復合材料技術的不斷成熟以及可回收利用的優勢,該品種的復合材料發展較快,歐美發達國家熱塑性樹脂基復合材料已經佔到樹脂基復合材料總量的30%以上。
高性能熱塑性樹脂基復合材料以注射件居多,基體以PP、PA為主。產品有管件(彎頭、三通、法蘭)、閥門、葉輪、軸承、電器及汽車零件、擠出成型管道、GMT模壓製品(如吉普車座椅支架)、汽車踏板、座椅等。玻璃纖維增強聚丙烯在汽車中的應用包括通風和供暖系統、空氣過濾器外殼、變速箱蓋、座椅架、擋泥板墊片、傳動皮帶保護罩等。
滑石粉填充的PP具有高剛性、高強度、極好的耐熱老化性能及耐寒性。滑石粉增強PP在車內裝飾方面有著重要的應用,如用作通風系統零部件,儀表盤和自動剎車控制杠等,例如美國HPM公司用20%滑石粉填充PP製成的蜂窩狀結構的吸音天花板和轎車的搖窗升降器卷繩筒外殼。
雲母復合材料具有高剛性、高熱變形溫度、低收縮率、低撓曲性、尺寸穩定以及低密度、低價格等特點,利用雲母/聚丙烯復合材料可製作汽車儀表盤、前燈保護圈、擋板罩、車門護欄、電機風扇、百葉窗等部件,利用該材料的阻尼性可製作音響零件,利用其屏蔽性可製作蓄電池箱等。
我國的熱塑性樹脂基復合材料的研究開始於20世紀80年代末期,近十年來取得了快速發展,2000年產量達到12萬噸,約占樹脂基復合材料總產量的17%,,所用的基體材料仍以PP、PA為主,增強材料以玻璃纖維為主,少量為碳纖維,在熱塑性復合材料方面未能有重大突破,與發達國家尚有差距。
我國復合材料的發展潛力和熱點
我國復合材料發展潛力很大,但須處理好以下熱點問題。
1、復合材料創新
復合材料創新包括復合材料的技術發展、復合材料的工藝發展、復合材料的產品發展和復合材料的應用,具體要抓住樹脂基體發展創新、增強材料發展創新、生產工藝發展創新和產品應用發展創新。到2007年,亞洲佔世界復合材料總銷售量的比例將從18%增加到25%,目前亞洲人均消費量僅為0.29kg,而美國為6.8kg,亞洲地區具有極大的增長潛力。
2、聚丙烯腈基纖維發展
我國碳纖維工業發展緩慢,從CF發展回顧、特點、國內碳纖維發展過程、中國PAN基CF市場概況、特點、「十五」科技攻關情況看,發展聚丙烯腈基纖維既有需要也有可能。
3、玻璃纖維結構調整
我國玻璃纖維70%以上用於增強基材,在國際市場上具有成本優勢,但在品種規格和質量上與先進國家尚有差距,必須改進和發展紗類、機織物、無紡氈、編織物、縫編織物、復合氈,推進玻纖與玻鋼兩行業密切合作,促進玻璃纖維增強材料的新發展。
4、開發能源、交通用復合材料市場
一是清潔、可再生能源用復合材料,包括風力發電用復合材料、煙氣脫硫裝置用復合材料、輸變電設備用復合材料和天然氣、氫氣高壓容器;二是汽車、城市軌道交通用復合材料,包括汽車車身、構架和車體外覆蓋件,軌道交通車體、車門、座椅、電纜槽、電纜架、格柵、電器箱等;三是民航客機用復合材料,主要為碳纖維復合材料。熱塑性復合材料約佔10%,主要產品為機翼部件、垂直尾翼、機頭罩等。我國未來20年間需新增支線飛機661架,將形成民航客機的大產業,復合材料可建成新產業與之相配套;四是船艇用復合材料,主要為遊艇和漁船,遊艇作為高級娛樂耐用消費品在歐美有很大市場,由於我國魚類資源的減少、漁船雖發展緩慢,但復合材料特有的優點仍有發展的空間。
5、纖維復合材料基礎設施應用
國內外復合材料在橋梁、房屋、道路中的基礎應用廣泛,與傳統材料相比有很多優點,特別是在橋樑上和在房屋補強、隧道工程以及大型儲倉修補和加固中市場廣闊。
6、復合材料綜合處理與再生
重點發展物理回收(粉碎回收)、化學回收(熱裂解)和能量回收,加強技術路線、綜合處理技術研究,示範生產線建設,再生利用研究,大力拓展再生利用材料在石膏中的應用、在拉擠製品中的應用以及在SMC/BMC模壓製品中的應用和典型產品中的應用。
21世紀的高性能樹脂基復合材料技術是賦予復合材料自修復性、自分解性、自診斷性、自製功能等為一體的智能化材料。以開發高剛度、高強度、高濕熱環境下使用的復合材料為重點,構築材料、成型加工、設計、檢查一體化的材料系統。組織系統上將是聯盟和集團化,這將更充分的利用各方面的資源(技術資源、物質資源),緊密聯系各方面的優勢,以推動復合材料工業的進一步發展。
『伍』 生物材料都有那些
按材料功能劃分:
*1、血液相容性材料 如人工瓣膜、人工氣管、人工心臟、血漿分離膜、血液灌流用吸附劑、細胞培養基材等;
*2、軟組織相容性材料 如隱形眼睛片的高分子材料,人工晶狀體、聚硅氧烷、聚氨基酸等,用於人工皮膚、人工氣管、人工食道、人工輸尿管、軟組織修補等領域;
*3、硬組織相容性材料 如醫用金屬、聚乙烯、生物陶瓷等,關節、牙齒、其它骨骼等;
*4、生物降解材料 如甲殼素、聚乳酸等,用於縫合線、葯物載體、粘合劑等;
*5、高分子葯物多肽、胰島素、人工合成疫苗等,用於糖尿病、心血管、癌症以及炎症等。
按材料來源分類:
*1、自體材料
*2、同種異體器官及組織;
*3、異體器官及組織;
*4、人工合成材料;
*5、天然材料
根據組成和性質分為:
* 1、生物醫用金屬材料
* 2、醫用高分子材料
* 3、醫用無機非金屬材料
生物醫用金屬材料
較優秀的生物醫用金屬材料有,醫用不銹鋼、鈷基合金、鈦及鈦合金、鎳鈦形狀記憶合金、金銀等貴重金屬、銀汞合金、鉭、鈮等金屬和合金。
⑴醫用不銹鋼
具有一定的耐腐蝕性和良好的綜合力學性能,且加工工藝簡便,是生物醫用金屬材料中應用最多,最廣的材料。
常用鋼種有US304、316、316 L、317、317L等。
醫用不銹鋼植入活體後,可能發生點蝕,偶爾也產生應力腐蝕和腐蝕疲勞。醫用不銹鋼臨床前消毒、電解拋光和鈍化處理,可提高耐蝕性。
醫用不銹鋼在骨外科和齒科中應用較多。
⑵鈷基合金
鈷基合金人體內一般保持鈍化狀態,與不銹鋼比較,鈷基合金鈍化膜更穩定,耐蝕性更好。在所有醫用金屬材料中,其耐磨性最好,適合於製造體內承載苛刻的長期植入件。
在整形外科中,用於製造人工髖關節、膝關節以及接骨板、骨釘、關節扣釘和骨針等。在心臟外科中,用於製造人工心臟瓣膜等。
⑶醫用鈦和鈦合金
不僅具有良好的力學性能,而且在生理環境下具有良好的生物相容性。由於其比重小,彈性模量較其他金屬更接近天然骨,故廣泛應用於製造各種能、膝、肘、肩等人造關節。此外,鈦合金還用於心血管系統。鈦合金耐磨性能不理想,且存在咬合現象,限制了其使用范圍。
生物醫用高分子
按應用對象和材料物理性能分為軟組織材料、硬組織材料和生物降解材料。其可滿足人體組織器官的部分要求,因而在醫學上受到廣泛重視。目前已有數十種高分子材料適用於人體的植入材料。
* 軟組織材料:故主要用作為軟組織材料,特別 是人工臟器的膜和管材。聚乙烯膜、聚四氟乙烯膜、硅橡膠膜和管,可用於製造人工肺、腎、心臟、喉頭、氣管、膽管、角膜。聚酯纖維可用於製造血管、腹膜等。
* 硬組織材料:丙烯酸高分子(即骨水泥)、聚碳酸醋、超高分子量聚乙烯、聚甲基丙烯酸甲脂(PMMA)、尼龍、硅橡膠等可用於製造人工骨和人工關節。
* 降解材料:脂肪族聚醋具有生物降解特性,已用於可接收性手術縫線。
生物醫用無機非金屬材料
生物無機材料主要包括生物陶瓷、生物玻璃和醫用碳素材料。
按植入生物活體內引起的組織與材料反應,生物陶瓷分為:
⑴近於惰性的生物陶瓷,如氧化鋁生物陶瓷、氧化鋯生物陶瓷、硼硅酸玻璃;
⑵表面活性生物陶瓷,如磷酸鈣基生物陶瓷、生物活性玻璃陶瓷;
⑶可吸收性生物陶瓷,如偏磷酸三鈣生物陶瓷、硫酸鈣生物陶瓷。
生物活性玻璃陶瓷植入活體後,能夠與體液發生化學反應,並在組織表面生成羚基磷灰石層,故可用於人工種植牙根、牙冠、骨充填料和塗層材料。
與自然骨比較,生物活性玻璃陶瓷雖然具有較高的強度,但韌性較差,彈性模量過高,易脆斷,在生理環境中抗疲勞性能較差,目前還不能直接用於承力較大的人工骨。
醫用碳素材料:具有接近於自然骨的彈性模量。
醫用碳素材料疲勞性能最優,強度不隨循環載荷作用而下降。無序堆垛的碳材料耐磨性理想。
醫用碳素材料在生理環境中較穩定,近於惰性,具有較好的生物相容性,不會引起凝血和溶血反應,特別適合於在生理環境中使用。
醫用碳材料已大量用於心血管系統的修復,如人工心臟瓣膜、人工血管。還可作為金屬和聚合物的塗層材料。
生物醫用復合材料
生物醫用復合材料是由二種或二種以上不同材料復合而成的。
按基材分為:高分子基、陶瓷基、金屬基等生物醫用復合材料。
按增強體形態和性質分為纖維增強、顆粒增強、生物活性物質充填生物醫用復合材料。
按材料植入體內後引起的組織與材料反應分為:生物惰性、生物活性和可吸收性生物醫用復合材料。[1]
『陸』 什麼是納米生物復合材料
從材料學角度來看,生物體及其多數組織均可視為由各種基質材料構成的復合材料。具體來看,生物體內以無機-有機納米生物復合材料最為常見,如骨骼、牙齒等就是由羥基磷灰石納米晶體和有機高分子基質等構成的納米生物復合材料。人們通過仿生礦化方法制備納米生物復合材料,獲得了優於常規材料的力學性能。
按照生物礦化過程原理,美國科學家找到了一種兩親性肽分子,該兩親分子一端為親水的精氨酸-甘氨酸-天冬氨酸(RGD),另一端含有磷醯化的氨基酸殘基,親水的RGD序列有利於材料與細胞的粘連,而磷醯化的氨基酸殘基可與鈣離子相互作用。此兩親性肽分子能組裝成納米纖維以期促進生物礦化,使之成為模板指導羥基磷灰石(HA)結晶生長。此兩親分子納米纖維溶液可形成類似於骨的膠原纖維基質的凝膠,因此可將疑膠注射至骨缺損處作為生成新骨組織的基質。研究表明將凝膠置於含酸和磷酸鹽離子的溶液中,20min後體系仿生礦化,HA結晶沿纖維生長,轉變成羥基磷灰石-肽復合材料,該納米生物復合材料堅硬如真骨。
清華大學研究開發的納米級羥基磷灰石-膠原復合物在組成上模仿了天然骨基質中無機和有機成分,其納米級的做結構類似於天然骨基質。多孔的納米羥基磷灰石-膠原復合物形成的三維支架為成骨細胞提供了與體內相似的微環境。細胞在該支架上能很好地生長並能分泌骨基質。體外及動物實驗表明,此種羥基磷灰石-膠原復合物是良好的竹修復納米生物材料。
『柒』 復合材料是什麼有哪些用途
復合材料 是由兩種或兩種以上不同性質的材料,通過物理或化學的方法,在宏觀上組成具有新性能的材料。各種材料在性能上互相取長補短,產生協同效應,使復合材料的綜合性能優於原組成材料而滿足各種不同的要求。
復合材料分類:復合材料的基體材料分為金屬和非金屬兩大類。
金屬基體常用的有鋁、鎂、銅、鈦及其合金。
非金屬基體主要有合成樹脂、橡膠、陶瓷、石墨、碳等。
增強材料主要有玻璃纖維、碳纖維、硼纖維、芳綸纖維、碳化硅纖維、石棉纖維、晶須,金屬絲和硬質細粒等。復合材料的主要應用領域有:1.航空航天領域。由於復合材料熱穩定性好,比強度、比剛度高,可用於製造飛機機翼和前機身、衛星天線及其支撐結構、太陽能電池翼和外殼、大型運載火箭的 殼體、發動機殼體、太空梭結構件等。2.汽車工業。由於復合材料具有特殊的振動阻尼特性,可減振和降低雜訊、抗疲勞性能好,損傷後易修理,便於整體成形,故可用於製造汽車車身、受力構件、傳動軸、發動機架及其內部構件。3.化工、紡織和機械製造領域。有良好耐蝕性的碳纖維與樹脂基體復合而成的材料,可用於製造化工設備、紡織機、造紙機、復印機、高速機床、精密儀器等。4.醫學領域。碳纖維復合材料具有優異的力學性能和不吸收X射線特性,可用於製造醫用X光機和矯形支架等。碳纖維復合材料還具有生物組織相容性和血液相容性,生物環境下穩定性好,也用作生物醫學材料。