聚合基復合材料界面特點
界面產物、斷口微觀形貌、界面結合狀態(直接結合/溶解擴散/反應型/機械鑲嵌)。
❷ 復合材料的界面定義是什麼,包括哪些部分
復合材料的界面是指基體與增強物之間化學成分有顯著變化的、構成彼此結合的、能起載荷傳遞作用的微小區域。
界面通常包含以下幾個部分:
基體和增強物的部分原始接觸面;
基體與增強物相互作用生成的反應產物,此產物與基體及增強物的接觸面;
界面的效應
(1)傳遞效應 界面能傳遞力,即將外力傳遞給增強物,起到基體和增強物之間的橋梁作用。
(2)阻斷效應 結合適當的界面有阻止裂紋擴展、中斷材料破壞、減緩應力集中的作用。
(3)不連續效應 在界面上產生物理性能的不連續性和界面摩擦出現的現象,如抗電性、電感應性、磁性、耐熱性、尺寸穩定性等。
(4)散射和吸收效應 光波、聲波、熱彈性波、沖擊波等在界面產生散射和吸收,如透光性、隔熱性、隔音性、耐機械沖擊及耐熱沖擊性等。
(5)誘導效應 一種物質(通常是增強物)的表面結構使另一種(通常是聚合物基體)與之接觸的物質的結構由於誘導作用而發生改變,由此產生一些現象,如強的彈性、低的膨脹性、耐沖擊性和耐熱性等
界面效應是任何一種單一材料所沒有的特性,它對復合材料具有重要的作用。界面效應既與界面結合狀態、形態和物理-化學性質有關,也與復合材料各組分的浸潤性、相容性、擴散性等密切相關。
❸ 聚合物基復合材料的優缺點
聚合物基復合材料的優缺點如下:
優點:具有很高的拉伸強度,而且防專火、防霉、防蛀屬、耐高溫,電絕緣性能也非常出色。其化學穩定性良好,與其他所有化學葯品和有機溶劑都不會發生化學反應。
缺點是:具有脆性、不耐磨、對人的皮膚有刺激性等。
(3)聚合基復合材料界面特點擴展閱讀
高分子材料無所不在,廣泛滲透於人類生活的各個方面,在人們生活中發揮著巨大的作用。前不久美國宇航局在費城召開的會議中指出,新材料的主要內容包括聚合物、復合材料、磁性材料、半導體材料、光學纖維和陶瓷。
這些材料中,除半導體材料外,均涉及高分子材料,可見高分子材料在當代及未來國際競爭中佔有相當重要的地位。
❹ 復合材料界面效應有哪些 復合材料界面的形成有哪幾個階段提高界面結合強度的途徑有哪些
答:復合材料界面效應有:1、傳遞效應:界面可將復合材料體系中基體承受的外力傳遞給增強相,起到基體和增強相之間的橋梁作用。2、阻斷效應:基體和增強相之間結合力適當的界面有阻止裂紋擴展、減緩應力集中的作用。3、不連續效應:在界面上產生物理性能的不連續性和界面摩擦出現的現象,如抗電性、電感應性、磁性、耐熱性和磁場尺寸穩定性等。4、散射和吸收效應:光波、聲波、熱彈性波、沖擊波等在界面產生散射和吸收,如透光性、隔熱性、隔音性、耐機械沖擊性等。5、誘導效應:一種物質(通常是增強劑)的表面結構使另一種(通常是聚合物基體)與之接觸的物質的結構由於誘導作用而發生改變,由此產生一些現象,如強彈性、低膨脹性、耐熱性和沖擊性等。
復合材料界面的形成有三個階段:1、增強體表面預處理或改性階段(減小增強體和基體表面張力差距)2、基體材料和增強材料之間的浸潤、接觸(界面形成與發展的關鍵階段):接觸——吸附與浸潤——交互擴散——化學結合或物理結合3、液態或粘流態組分的固化過程,即凝固或化學反應(界面形成與發展的關鍵階段)a、界面的固定b、界面的穩定
提高界面結合強度的途徑有:1、反應結合: 在復合材料組分之間發生化學作用,在界面上形成共價鍵結合在理論上可獲得最強的界面粘結能。2、溶解與浸潤結合:界面潤濕理論是基於液態樹脂對增強材料表面的浸潤親和,即物理和化學吸附作用。液態樹脂對纖維表面的良好浸潤是十分重要的。浸潤不良會在界面上產生空隙,導致界面缺陷和應力集中,使界面強度下降。良好的或完全浸潤將使界面強度大大提高,甚至優於基體本身的內聚強度。3、機械結合: 當兩個表面相互接觸後,由於表面粗糙不平將發生機械互鎖。 另一方面,盡管表面積隨著粗糙度增大而增大,但其中有相當多的孔穴,粘稠的液體是無法流入的。無法流入液體的孔不僅造成界面脫粘的缺陷,而且也形成了應力集中點。4、上述三種形式的混合結合方式。
❺ 聚合物基復合材料的界面粘接性的主要影響因素有哪些
粘接性影響因抄素很多很多,單就某一種材料來說,界面粘接性主要影響因素有:表面清潔度,浸潤性,粘接頭結構設計(最大粘接面;應力均勻,避免應力集中),膠黏劑種類選擇(硬對硬,韌對韌;極性對極性,耐水耐油耐溫等)。
❻ 復合材料中的界面相有什麼特點,起什麼作用
復合材料界面是指復合材料的基體與增強材料之間化學成分有顯著變化的、構成彼此結合的、能起載荷等傳遞作用的微小區域。目前的研究尚處於半定量和半經驗的水平上。 最早復合材料界面曾被想像成是一層沒有厚度的面(或稱單分子層的面)。而事實上復合材料界面是一層具有一定厚度(納米以上)、結構隨基體和增強體而異、與基體有明顯差別的新相——界面相(或稱界面層)。因為增強體和基體互相接觸時, 在一定條件的影響下,可能發生化學反應或物理化學作用,如兩相間元素的互相擴散、溶解,從而產生不同於原來兩相的新相;即使不發生反應、擴散、溶解,也會由於基體的固化、凝固所產生的內應力,或者由於組織結構的誘導效應,導致接近增強體的基體發生結構上的變化或堆砌密度上的變化,從而導致這個局部基體的性能不同於基體的本體性能,形成界面相。界面相也包括在增強體表面上預先塗覆的表面處理劑層和增強體經表面處理工藝而發生反應的表面層。因此,必須建立復合材料界面存在獨立相的新概念。復合材料界面相的結構與性能對復合材料整體的性能影響大。為改善復合材料性能,必須考慮界面設計和控制。結構復合材料界面相存在的殘應力,是由於基體的固化或凝固收縮和兩相間熱膨脹系數的失配而造成的。無論應力大小和方向,都會影響到復合材料受載時的行為,如造成復合材料拉伸和壓縮性能的明顯差異等。結構復合材料界面的作用,是在復合材料受到載荷時把基體上的應力傳遞到增強體上。這就需要界面相有 足夠的粘接強度,而兩相表面能夠互相浸潤是先決條件。但是界面層並不是粘接得越強越好,而是要有適當的粘接強度,因為界面相還有另一個作用是在一定應力條件下能夠脫粘,同時使增強體在基體中拔出並互相發生摩擦。這種由脫粘而增大表面能所做的功、拔出功和摩擦功都提高了破壞功,有助於改善復合材料的破壞行為,即提高它的強度。至於功能復合材料界面相的作用,目前尚很少研究,但已有實驗證實,界面相在功能復合材料中的作用也是重要的。 表徵為了認識界面的作用,了解界面結構對材料整體性能的影響,必須先表徵界面相的化學、物理結構,厚度和形貌,粘接強度和殘余應力等,從而可以尋找它們與復合材料性能之間的關系。 界面相化學結構包括組成元素、價態及其分布。其表徵可以藉助許多固體物理用的先進儀器,如俄歇電子 譜(AES,SAM)、電子探針(EP)、X光電子能譜儀 (X PS)、掃描二次離子質譜儀(S SIMS)、電子能量損失譜儀(EELS,PEELS)、傅里葉紅外光譜(FTIR)、顯微 拉曼光譜(MRS)、擴展X射線吸收細微結構譜 (E XAFS)等。由於界面相有時僅為納米級的微區,而且有的組成非常復雜(尤其是金屬和陶瓷基復合材料), 因此迄今還不能說哪一種方法可以滿意地給出有關復合材料界面相全部化學信息。這是因為這些方法有的束斑太大,遠遠超過界面微區的尺寸;有的僅能提供元素的信息而不能知道元素的價態;有的會對某些觀察物造成 表面損傷等,存在著各式各樣的局限性。所以仍需研究 合適的新方法,或幾種方法的配合使用。 界面相形貌和厚度的表徵也有不少方法,如透射電 鏡(TEM)、掃描電鏡(S EM)。新方法有角掃描X射線反射譜(GAXP),可以測定金屬基和陶瓷基復合材料界 面相的厚度。但這些方法在測量上也有難度。 界面相粘接強度的表徵基本上有5種方法,即單絲拔出法、埋入基體的單絲裂斷長度法、微(單絲)壓出 法、球形(或錐形)壓頭壓痕法、常規三點彎剪法等。前兩種方法只能表徵單絲復合材料的行為;後3種雖是表 征復合材料,但又各有不足之處。而且各種方法測出 的數據相差甚遠,以球形壓痕法和三點彎剪法數值較高。目前尚難以決定何種方法是最為合適的。此外,還有用 動態力學法測定內耗值以表徵界面結合狀態的方法。界面湘殘余應力的表徵也很困難。對透明基體和不 透明基體都分別有其相應的方法,但是均不理想,同時 在計算處理上也較復雜。復合材料界面理論過去對於復合材料界面理論的 研究是試圖提出一個能夠適用於各種復合材料的理論,諸如化學反應理論、浸潤理論、可形變層理論、約束層 理論、靜電作用理論以及把一些理論結合起來的理論。但它們都有許多矛盾,常不能自圓其說。由於對界面認識的逐步深化,了解到界面相的復雜性與多重性是和原組成材料、加工工藝和使用環境密切有關。因此,理論研究轉向針對某一具體體系,探討界面微結構與宏觀性能的關系,界面浸潤過程和界面反應的熱力學與動力學 關系,建立某種體系的界面相模型並作理論處理等。
❼ 在多組分聚合物體系中界面對材料的性能如何影響從聚合物基復合材料,共混物兩個體系進行說明
多方面的一個事物,然後都是有的事物的一種總體能量,然後自己改變它的整體運行,來解決這個問題的