冶金顆粒機
『壹』 粉末冶金的制備
(1)生產粉末。粉末的生產過程包括粉末的製取、粉料的混合等步驟。為改善粉末的成型性和可塑性通常加入機油、橡膠或石蠟等增塑劑。
(2)壓製成型。粉末在15-600MPa壓力下,壓成所需形狀。
(3)燒結。在保護氣氛的高溫爐或真空爐中進行。燒結不同於金屬熔化,燒結時至少有一種元素仍處於固態。燒結過程中粉末顆粒間通過擴散、再結晶、熔焊、化合、溶解等一系列的物理化學過程,成為具有一定孔隙度的冶金產品。
(4)後處理。一般情況下,燒結好的製件可直接使用。但對於某些尺寸要求精度高並且有高的硬度、耐磨性的製件還要進行燒結後處理。後處理包括精壓、滾壓、擠壓、淬火、表面淬火、浸油、及熔滲等。
粉末的製取方法
製取粉末是粉末冶金的第一步。粉末冶金材料和製品不斷的增多,其質量不斷提高,要求提供的粉末的種類愈來愈多。例如,從材質范圍來看,不僅使用金屬粉末,也使用合金粉末,金屬化合物粉末等;從粉末外形來看,要求使用各種形狀的粉末,如產生過濾器時,就要求形成粉末;從粉末粒度來看,要求各種粒度的粉末,粗粉末粒度有500~1000微米超細粉末粒度小於0.5微米等等。為了滿足對粉末的各種要求,也就要有各種各樣生產粉末的方法這些方法不外乎使金屬、合金或者金屬化合物呈固態、液態或氣態轉變成粉末狀態。製取粉末的各種方法以及各種方法制的粉末。呈固態使金屬與合金或者金屬化合物轉變成粉末的方法包括:
(1)從固態金屬與合金製取金屬與合金粉末的有機械粉碎法和電化腐蝕法:
(2)從固態金屬氧化物及鹽類製取金屬與合金粉末的還原法從金屬和合金粉末、金屬氧化物和非金屬粉末製取金屬化合物粉末的還原-化合法呈液態使金屬與合金或者金屬化合物轉變成粉末方法包括:
(1)從液態金屬與合金製取與合金粉末的有霧化法
(2)從金屬鹽溶液置換和還原製取金屬合金以及包覆粉末的有置換法、溶液氫還原法;從金屬熔鹽中沉澱製取金屬粉末的有熔鹽陳定法;從輔助金屬浴中析出製取金屬化合物粉末的有金屬浴法。
(3)從金屬鹽溶液電解製取金屬與合金粉末的有水溶液電解法;從金屬熔鹽電解製取金屬和金屬化合物粉末的有熔鹽電解法。呈氣態使金屬或者金屬化合物轉變成粉末的方法:
(1)從金屬蒸汽冷凝製取金屬粉末的有蒸汽冷凝法;
(2)從氣態金屬碳基物離解製取金屬、合金以及包覆粉末的有碳基物熱離解法
(3)從氣態金屬鹵化物氣相還原製取金屬、合金粉末以及金屬、合金塗層的有氣相氫還原法;從氣態金屬鹵化物沉積製取金屬化合物粉末以及塗層的有化學氣相沉積法。但是,從過程的實質來看,現有制粉方法大體上可歸納為兩大類,即機械法和物理化學法。機械法是將原材料機械的粉碎,而化學成分基本上不發生變化的工藝過程;物理化學法是藉助化學的或物理的作用,改變原料的化學成分或聚集狀態而獲得粉末的工藝過程,粉末的生產方法很多從工業規模而言,應用最廣泛的漢斯還原法、霧化法和電解法有些方法如氣相沉積法和液相沉積法在特殊應用時亦很重要。
粉末冶金工藝的基本工序是:
1、原料粉末的制備。現有的制粉方法大體可分為兩類:機械法和物理化學法。而機械法可分為:機械粉碎及霧化法;物理化學法又分為:電化腐蝕法、還原法、化合法、還原-化合法、氣相沉積法、液相沉積法以及電解法。其中應用最為廣泛的是還原法、霧化法和電解法。
2、粉末成型為所需形狀的坯塊。成型的目的是製得一定形狀和尺寸的壓坯,並使其具有一定的密度和強度。成型的方法基本上分為加壓成型和無壓成型。加壓成型中應用最多的是模壓成型。此外還可使用3D列印技術進行胚塊的製作。
3、坯塊的燒結。燒結是粉末冶金工藝中的關鍵性工序。成型後的壓坯通過燒結使其得到所要求的最終物理機械性能。燒結又分為單元系燒結和多元系燒結。對於單元系和多元系的固相燒結,燒結溫度比所用的金屬及合金的熔點低;對於多元系的液相燒結,燒結溫度一般比其中難熔成分的熔點低,而高於易熔成分的熔點。除普通燒結外,還有松裝燒結、熔浸法、熱壓法等特殊的燒結工藝。
4、產品的後序處理。燒結後的處理,可以根據產品要求的不同,採取多種方式。如精整、浸油、機加工、熱處理及電鍍。此外,近年來一些新工藝如軋制、鍛造也應用於粉末冶金材料燒結後的加工,取得較理想的效果。
粉末性能(property of powder)
粉末所有性能的總稱。它包括:粉末的幾何性能(粒度、比表面、孔徑和形狀等);粉末的化學性能(化學成分、純度、氧含量和酸不溶物等);粉體的力學特性(松裝密度、流動性、成形性、壓縮性、堆積角和剪切角等);粉末的物理性能和表面特性(真密度、光澤、吸波性、表面活性、ze%26mdash;ta(%26ccedil;)電位和磁性等)。粉末性能往往在很大程度上決定了粉末冶金產品的性能。
幾何性能最基本的是粉末的粒度和形狀。
(1)粒度。它影響粉末的加工成形、燒結時收縮和產品的最終性能。某些粉末冶金製品的性能幾乎和粒度直接相關,例如,過濾材料的過濾精度在經驗上可由原始粉末顆粒的平均粒度除以10求得;硬質合金產品的性能與wc相的晶粒有很大關系,要得到較細晶粒度的硬質合金,惟有採用較細粒度的wc原料才有可能。生產實踐中使用的粉末,其粒度范圍從幾百個納米到幾百個微米。粒度越小,活性越大,表面就越容易氧化和吸水。當小到幾百個納米時,粉末的儲存和輸運很不容易,而且當小到一定程度時量子效應開始起作用,其物理性能會發生巨大變化,如鐵磁性粉會變成超順磁性粉,熔點也隨著粒度減小而降低。
(2)粉末的顆粒形狀。它取決於制粉方法,如電解法製得的粉末,顆粒呈樹枝狀;還原法製得的鐵粉顆粒呈海綿片狀;氣體霧化法製得的基本上是球狀粉。此外,有些粉末呈卵狀、盤狀、針狀、洋蔥頭狀等。粉末顆粒的形狀會影響到粉末的流動性和松裝密度,由於顆粒間機械嚙合,不規則粉的壓坯強度也大,特別是樹枝狀粉其壓制坯強度最大。但對於多孔材料,採用球狀粉最好。
力學特性粉末的力學性能即粉末的工藝性能,它是粉末冶金成形工藝中的重要工藝參數。粉末的松裝密度是壓制時用容積法稱量的依據;粉末的流動性決定著粉末對壓模的充填速度和壓機的生產能力;粉末的壓縮性決定壓制過程的難易和施加壓力的高低;而粉末的成形性則決定坯的強度。
化學性能主要取決於原材料的化學純度及制粉方法。較高的氧含量會降低壓制性能、壓坯強度和燒結製品的力學性能,因此粉末冶金大部分技術條件中對此都有一定規定。例如,粉末的允許氧含量為0.2%~1.5%,這相當於氧化物含量為1%~10%。
『貳』 粉末冶金是怎麼個加工形式
粉末冶來金是一種以金屬粉末源(包括有非金屬粉末混入狀況)為原料,用於燒結成形,製造金屬摩擦材料和製品的工藝技術。粉末冶金生產的材料、零件具有質優、價廉、節能和省材等特點,被廣泛應用於汽車、電子、儀器儀表、機械製造、原子反應堆、特種高性能合金製造等工業領域,用途愈來愈廣泛。粉末冶金材料的產品結構大體分為粉末冶金機械零件; 鐵氧體磁性材料。包括永生磁鐵磁性材料和軟磁鐵磁性材料;硬質合金材料和製品;高熔點金屬材料和難熔性金屬材料;精細陶瓷材料和製品。
目前,粉末冶金工業中主導性產品為粉末冶金機械零件和鐵氧磁性材料。粉末冶金的機械零件生產主要集中在結構零件、滑動軸承、摩擦零件以及過濾元件、過孔性材料等幾方面。磁性材料則主要分為硬磁材料、軟磁材料及磁介質材料3大類。軟磁磁性材料生產主要為純鐵、鐵銅磷相合金、鐵鎳合金、鐵鋁合金材料和製品。硬磁材料生產的主體則為鋁鎳鐵合金、鋁鎳鑽鐵合金、釤鑽合金、釹鐵硼合金材料和製品的生產。而磁介質的生產主要集中在軟磁材料和製品的生產。而磁介質的生產主要集中在軟磁材料和電介質組合物製成的製品生產方面。
『叄』 什麼是粉末冶金
粉末冶金是抄製取金屬粉末或用金屬粉末(或金屬粉末與非金屬粉末的混合物)作為原料,經過成形和燒結,製造金屬材料、復合材料以及各種類型製品的工藝技術。粉末冶金法與生產陶瓷有相似的地方,均屬於粉末燒結技術,因此,一系列粉末冶金新技術也可用於陶瓷材料的制備。由於粉末冶金技術的優點,它已成為解決新材料問題的鑰匙,在新材料的發展中起著舉足輕重的作用。
粉末冶金包括制粉和製品。其中制粉主要是冶金過程,和字面吻合。而粉末冶金製品則常遠遠超出材料和冶金的范疇,往往是跨多學科(材料和冶金,機械和力學等)的技術。尤其現代金屬粉末3D列印 ,集機械工程、CAD、逆向工程技術、分層製造技術、數控技術、材料科學、激光技術於一身,使得粉末冶金製品技術成為跨更多學科的現代綜合技術。
『肆』 粉末冶金的主要產品
非常多來,可源以去翔宇粉末冶金www.zsxy88.com看看
『伍』 圓盤造粒機的優點介紹
經多次研製集多復混肥造粒機設備的製造經驗,採用優質防腐、耐磨材料的精心製造,具有外形美觀、操作簡單、能耗低、壽命長、成粒率高等優點,是國內較為先進的復混肥造粒設備,產品遍及全國各地。造粒機適用范圍廣泛,其特徵如下:
1、 無乾燥工藝,常溫造粒,一次成型,投資少,見效快,經濟效益好。
2、 動力小運行可靠,無三廢排放,操作穩定,維修方便,流程布局合理,技術先進,生產成本低。
3、 原料適應性廣,可用於復混肥料、醫葯、化工、飼料、煤炭、冶金等各種原料的造粒,並能生產各種濃度、多種類型(包括有機肥、無機肥、生物肥、磁化肥等)復混肥。
4、 特別是稀土、碳銨、硫酸銨系復混肥造粒,填補了國內空白,居國內領先水平,是國家環境保護適用技術的推廣項目.
『陸』 粉末冶金壓製成形中 中模欠粉充填是怎麼樣的原理 求高手指點
粉末冶金技術中所應用的物質,不僅可以按他們的聚集狀態來分類,而且也可以按粉碎程度和粘合度來分類,顆粒間唄中間介質隔開,而在緻密金屬中,晶粒間的接觸在整個體積內部看的見,粉末材料的顆粒常常是相互接觸的,但這種接觸的性質與實體晶粒間的接觸有所不同。在未經壓至的粉末內,顆粒的實際接觸面僅占顆粒表面的微小部分。
粒度影響粉末的加工成形、燒結時收縮和產品的最終性能。某些粉末冶金製品的性能幾乎和粒度直接相關,例如,過濾材料的過濾精度在經驗上可由原始粉末顆粒的平均粒度除以10求得;硬質合金產品的性能與wc相的晶粒有很大關系,要得到較細晶粒度的硬質合金,惟有採用較細粒度的wc原料才有可能。生產實踐中使用的粉末,其粒度范圍從幾百個納米到幾百個微米。粒度越小,活性越大,表面就越容易氧化和吸水。當小到幾百個納米時,粉末的儲存和輸運很不容易,而且當小到一定程度時量子效應開始起作用,其物理性能會發生巨大變化,如鐵磁性粉會變成超順磁性粉,熔點也隨著粒度減小而降低。
粉末的顆粒形狀。它取決於制粉方法,如電解法製得的粉末,顆粒呈樹枝狀;還原法製得的鐵粉顆粒呈海綿片狀;氣體霧化法製得的基本上是球狀粉。此外,有些粉末呈卵狀、盤狀、針狀、洋蔥頭狀等。粉末顆粒的形狀會影響到粉末的流動性和松裝密度,由於顆粒間機械嚙合,不規則粉的壓坯強度也大,特別是樹枝狀粉其壓制坯強度最大。但對於多孔材料,採用球狀粉最好。
力學特性粉末的力學性能即粉末的工藝性能,它是粉末冶金成形工藝中的重要工藝參數。粉末的松裝密度是壓制時用容積法稱量的依據;粉末的流動性決定著粉末對壓模的充填速度和壓機的生產能力;粉末的壓縮性決定壓制過程的難易和施加壓力的高低;而粉末的成形性則決定坯的強度。
化學性能主要取決於原材料的化學純度及制粉方法。較高的氧含量會降低壓制性能、壓坯強度和燒結製品的力學性能,因此粉末冶金大部分技術條件中對此都有一定規定。
『柒』 粉末冶金燒結的驅動力 是粉料在制備過程中,粉末顆粒表面儲存機械能——以表面能形式。
粉料在制備過程中,會受到沖擊;或是其他的電化學影響。
所以會在表面形成應力、形變、異形結構、或是合金層/化合物層之中的一種或幾種。
這就是燒結的驅動力。
以上是我的理解,你還可以問問大學老師。:)
『捌』 哪個顆粒機廠要招師傅
買顆粒機免費提供顆粒生產技術。