氮化硼陶瓷基復合材料性能
⑴ 制備高性能陶瓷基復合材料對基體和纖維有哪些要求
陶瓷基復合材料是以陶瓷為基體與各種纖維復合的一類復合材料。陶瓷基體可為氮化版硅權、碳化硅等高溫結構陶瓷。這些先進陶瓷具有耐高溫、高強度和剛度、相對重量較輕、抗腐蝕等優異性能,而其致命的弱點是具有脆性,處於應力狀態時,會產生裂紋,甚至斷裂導致材料失效。而採用高強度、高彈性的纖維與基體復合,則是提高陶瓷韌性和可靠性的一個有效的方法。纖維能阻止裂紋的擴展,從而得到有優良韌性的纖維增強陶瓷基復合材料。 陶瓷基復合材料具有優異的耐高溫性能,主要用作高溫及耐磨製品。其最高使用溫度主要取決於基體特徵。陶瓷基復合材料已實用化或即將實用化的領域有刀具、滑動構件、發動機製件、能源構件等。法國已將長纖維增強碳化硅復合材料應用於製造高速列車的制動件,顯示出優異的摩擦磨損特性,取得滿意的使用效果。
⑵ 金屬基復合材料與陶瓷基復合材料相比較各自的優缺點有哪些
兩者都有非常大的潛力,就業是看心態,只要你感興趣的工作,不去計較短時間的工資版待遇的得權失,這工作還不是手到拈來。哪個更好誰也不好說,比如十幾年前的考古,地質都是沒人看好的學科,可現在可牛了,英語外貿這些熱門的到現在倒不那麼吃香。陶瓷基應用在軍工和航空方面,比如導彈火箭的發動機燃燒室和噴管,還有天地往返航天器的熱防護件,如,頭錐、機翼前緣等,還有核聚變的第一壁。現在民用比如碳/碳化硅陶瓷基復合材料剎車片,也已經有很好的應用。
⑶ 陶瓷基復合材料的性能特點
陶瓷基復合材料具有優異的耐高溫性能,主要用作高溫及耐磨製品。其最高使用溫內度主要容取決於基體特徵。陶瓷基復合材料已實用化或即將實用化的領域有刀具、滑動構件、發動機製件、能源構件等。法國已將長纖維增強碳化硅復合材料應用於製造高速列車的制動件,顯示出優異的摩擦磨損特性,取得滿意的使用效果。
⑷ 什麼是陶瓷基復合材料
合成材料
合成材料又稱人造材料,是人為地把不同物質經化學方法或聚合作用加工而成的材料,其特質與原料不同,如塑料、玻璃、鋼鐵等。
無機非金屬材料
無機非金屬材料(inorganic nonmetallic materials)是以某些元素的氧化物、碳化物、氮化物、鹵素化合物、棚化物以及硅酸鹽、鋁酸鹽、磷酸鹽、棚酸鹽等物質組成的材料。是除有機高分子材料和金屬材料以外的所有材料的統稱。元機非金屬材料的提法是20世紀40年代以後,隨著現代科學技術的發展從傳統的硅酸鹽材料演變而來的。元機非金屬材料是與有機高分子材料和金屬材料並列的三大材料之一。在晶體結構上,元旦主企是材料的元素結合力主更主Af鍵、共價鍵主豆子-共價混合蟹。這些化學鍵所特有的高鍵能、高鍵強賦予這一大類材料以高熔點、高硬度、耐腐蝕、耐磨損、高強度和良好的抗氧化性等基本屬性,以及寬廣的導電性、隔熱性、透光性及良好的鐵電性、鐵磁性和壓電性。元機非金屬材料品種和名目極其繁多,用途各異,因此,還沒有一個統一而完善的分類方法。通常把它們分為普通的(傳統的)和先進的(新型的)無機非金屬材料兩大類。傳統的元機非金屬材料是工業和基本建設所必需的基礎材料。如水泥是一種重要的建築材料;耐火材料與高溫技術,尤其與鋼鐵工業的發展關系密切;各種規格的平板玻璃、儀器玻璃和普通的光學玻璃以及日用陶瓷、衛生陶瓷、建築陶瓷、化工陶瓷和電瓷等與人們的生產、生活休戚相關。它們產量大,用途廣。其他產品,如搪瓷、磨料(碳化硅、氧化鋁)、鑄石(輝綠岩、玄武岩等)、碳素材料、非金屬礦(石棉、雲母、大理石等)也都屬於傳統的無機非金屬材料。新型元機非金屬材料是20世紀中期以後發展起來的,具有特殊性能和用途的材料。它們是現代新技術、新產業、傳統工業技術改造、現代國防和生物醫學所不可缺少的物質基礎。主要有先進陶瓷(advanced ceramics)、非晶態材料(noncrystal material〉、人工晶體〈artificial crys-tal〉、無機塗層(inorganic coating)、無機纖維(inorganic fibre〉等。
無機非金屬材料的分類
(1)傳統無機非金屬材料:水泥、玻璃、陶瓷等硅酸材料。
⑸ 打不碎的陶瓷基復合材料講了什麼科學知識
由纖維增強陶瓷的陶瓷基復合材料既可保留陶瓷材料耐高溫、高硬高強和耐磨蝕的性能,同時又克服了陶瓷的脆性,陶瓷基復合材料可滿足1200℃~1900℃的使用條件。人造地球衛星、載人宇宙飛船等的發射成功,取決於稱為「燒蝕材料」的陶瓷基復合材料,當宇宙飛行器從外層空間返回地球時,稠密的大氣層是它的必經之地,高速的飛行速度使飛行器和空氣之間產生強烈的摩擦,由此而放出的熱量瞬間可高達8000℃~10000℃,「燒蝕材料」此時吸收大量的熱燒掉自己的一部分,與些同時使周圍的溫度降低,以保證飛行器本體安然無恙。
陶瓷基復合材料除了用於航空航天部件,還可用於滑動構件、發動機部件和刀件具等。法國用長纖維增強碳化硅復合材料作為超高速列車的制動機,其優異的摩擦磨損特性是傳統制動件無法相比的。
陶瓷基復合材料以優異的耐高溫和耐磨損性能取勝於其他復合材料,但由於價格昂貴使其應用受到一定限制。
先進復合材料為航天航空事業做出了重大貢獻,最新研究結果表明,在某些特種飛機上先進復合材料用量已佔50%以上,美國最新生產的具有隱身功能的轟炸機B-2,其機體的結構材料幾乎全是復合材料。當今先進復合材料已廣泛擴展到其他領域,如用復合材料製成的箭,其箭桿重量減輕4%,命中率也大大提高。在汽車工業領域,用先進復合材料製成的製件代替同樣性能的鋼製件,可減重70%左右,而且在工藝上可一次成型,可用來製造汽車車體、受力構件、發動機架和內部構件。先進復合材料在化工、紡織業、醫療和精密儀器等領域也發揮著不可估量的作用。
先進復合材料的研究十分活躍,發展趨向有以下特點:由宏觀復合向微觀復合發展;由增強性的雙元混雜向超混雜復合發展;由結構復合向多功能復合發展。復合材料除具有力學性能外,還有其他如電、磁、光等性能。
⑹ 陶瓷基復合材料的介紹
陶瓷基復合材料是以陶瓷為基體與各種纖維復合的一類復合材料。陶瓷基體可為氮內化硅、碳容化硅等高溫結構陶瓷。這些先進陶瓷具有耐高溫、高強度和剛度、相對重量較輕、抗腐蝕等優異性能,而其致命的弱點是具有脆性,處於應力狀態時,會產生裂紋,甚至斷裂導致材料失效。而採用高強度、高彈性的纖維與基體復合,則是提高陶瓷韌性和可靠性的一個有效的方法。纖維能阻止裂紋的擴展,從而得到有優良韌性的纖維增強陶瓷基復合材料。
⑺ 陶瓷基復合材料有什麼作用
由纖維增強陶瓷的陶瓷基復合材料既可保留陶瓷材料耐高溫、高硬高強和耐磨蝕的性能,同時又克服了陶瓷的脆性,陶瓷基復合材料可滿足1200℃~1900℃的使用條件。人造地球衛星、載人宇宙飛船等的發射成功,取決於稱為「燒蝕材料」的陶瓷基復合材料,當宇宙飛行器從外層空間返回地球時,稠密的大氣層是它的必經之地,高速的飛行速度使飛行器和空氣之間產生強烈的摩擦,由此而放出的熱量瞬間可高達8000℃~10000℃,「燒蝕材料」此時吸收大量的熱燒掉自己的一部分,與些同時使周圍的溫度降低,以保證飛行器本體安然無恙。
陶瓷基復合材料除了用於航空航天部件,還可用於滑動構件、發動機部件和刀件具等。法國用長纖維增強碳化硅復合材料作為超高速列車的制動機,其優異的摩擦磨損特性是傳統制動件無法相比的。
陶瓷基復合材料以優異的耐高溫和耐磨損性能取勝於其他復合材料,但由於價格昂貴使其應用受到一定限制。
先進復合材料為航天航空事業做出了重大貢獻,最新研究結果表明,在某些特種飛機上先進復合材料用量已佔50%以上,美國最新生產的具有隱身功能的轟炸機B-2,其機體的結構材料幾乎全是復合材料。當今先進復合材料已廣泛擴展到其他領域,如用復合材料製成的箭,其箭桿重量減輕4%,命中率也大大提高。在汽車工業領域,用先進復合材料製成的製件代替同樣性能的鋼製件,可減重70%左右,而且在工藝上可一次成型,可用來製造汽車車體、受力構件、發動機架和內部構件。先進復合材料在化工、紡織業、醫療和精密儀器等領域也發揮著不可估量的作用。
先進復合材料的研究十分活躍,發展趨向有以下特點:由宏觀復合向微觀復合發展;由增強性的雙元混雜向超混雜復合發展;由結構復合向多功能復合發展。復合材料除具有力學性能外,還有其他如電、磁、光等性能。
⑻ 為什麼要生產陶瓷基復合材料
陶瓷基復合材料是為了達到某些性能指標,將兩種以上陶瓷或陶瓷與非專陶瓷材料混合屬在一起製成的新型材料,使其具有兩者的綜合性能,主要是為了改善陶瓷的韌性,防止使用時出現突然斷裂。常見的方法是將兩種陶瓷物質(如氧化鋁和氮化硅)的粉末混合後燒製成高韌性材料,或者製成陶瓷纖維強化復合材料。