當前位置:首頁 » 粉末冶金 » 先進復合材料飛機發展探秘

先進復合材料飛機發展探秘

發布時間: 2021-03-12 19:52:02

❶ 先進復合材料在軍用飛機上,民用飛機上有什麼應用

為了提高軍用飛機性能,美國空軍材料研究所早在20世紀年代中期就開始尋求比已經採用的鋁合金、鈦合金等金屬材料的比強度、比剛度更大的材料。為此,研究開發了先進樹脂基復合材料、鋁鋰合金等輕質高性能材料。先進樹脂基復合材料在航空、航天飛行器結構上的應用獲得了成功,現已成為與鋁合金、鈦合金、鋼並駕齊驅的四大結構材料之一。先進樹脂基復合材料的用量已經成為飛機先進性的一個重要標志。
復合材料飛機結構技術是以實現高結構效率和改善飛機氣動彈性與隱身等綜合性能為目的的高新技術。先進樹脂基復合材料的應用,對飛機結構輕質化、小型化和高性能化起著至關重要的作用。復合材料結構特點和應用效果,在高性能戰斗機實現隱身、超聲速巡航、過失速飛行控制,前掠翼飛機先進氣動布局的實際應用,艦載攻擊/戰斗機耐腐蝕性改善和輕質化,直升機長壽命和輕質與隱身化等諸多方面得到了展現。復合材料技術已成為影響飛機發展的關鍵技術之一。
美國空軍F-117隱身戰斗機採用碳纖維增強環氧復合材料做成骨架和外面的蒙皮,沒有金屬表面,也沒有金屬鉚釘反射雷達波;美國1989年首飛的隱身轟炸機B-2,復合材料占結構用量的50%;F-22基本構型沒有採用特殊的外形隱身措施,沒有過多犧牲機動性,而它傳奇般的隱身性能主要是通過復合材料和隱身塗料完成的。而F-35中應用復合材料已佔到結構質量的30%~35%;「旅遊者號」(Voyager)全復合材料飛機於1986年創下了不加油、不著陸連續環球飛行9天,航程40 252千米的世界紀錄,其碳纖維結構用量大於90%,飛機的結構重量只有453 千克,載油量3噸。
軍用飛機中復合材料結構件的成功應用,給民用飛機的材料選擇帶來了巨大的影響,波音、空客等干線客機中復合材料在結構材料中的應用比例也越來越高。空客A380是550座級超大型寬體客機,整機採用了較多的復合材料(23%),大大減輕了飛機重量,減少了油耗和排放,降低了營運成本。波音787「夢想」飛機則是200座~300座級飛機,航程隨具體型號不同可覆蓋6 500~16 000千米。它使用碳纖維、有機纖維、玻璃纖維增強樹脂以及各種混雜纖維的復合材料製造了機翼前緣、壓力容器、引擎罩等構件,不僅使結構重量減輕,還提高了飛機的各種飛行性能。波音787中復合材料的用量達50%,這可使其比目前同類飛機節省20%的燃油消耗。空客公司由於受到波音公司復合材料高用量的威脅,計劃在A350飛機上將復合材料的用量再次提高到53%,以形成與波音787飛機的競爭。而倍受國人關注的國產大飛機C919復合材料的用量也將達到 20%以上。復合材料在飛機上的應用經歷了從次承力構件—尾翼主承力構件—機翼—機身主承力構件的發展,已成為飛機結構的主要材料。

❷ 先進復合材料在軍用飛機上,民用飛機上有什麼應用

為了提高軍用飛機性能,美國空軍材料研究所早在20世紀50年代中期就開始尋求比已經採用的鋁合金、鈦合金等金屬材料的比強度、比剛度更大的材料。為此,研究開發了先進樹脂基復合材料、鋁鋰合金等輕質高性能材料。先進樹脂基復合材料在航空、航天飛行器結構上的應用獲得了成功,現已成為與鋁合金、鈦合金、鋼並駕齊驅的四大結構材料之一。先進樹脂基復合材料的用量已經成為飛機先進性的一個重要標志。
復合材料飛機結構技術是以實現高結構效率和改善飛機氣動彈性與隱身等綜合性能為目的的高新技術。先進樹脂基復合材料的應用,對飛機結構輕質化、小型化和高性能化起著至關重要的作用。復合材料結構特點和應用效果,在高性能戰斗機實現隱身、超聲速巡航、過失速飛行控制,前掠翼飛機先進氣動布局的實際應用,艦載攻擊/戰斗機耐腐蝕性改善和輕質化,直升機長壽命和輕質與隱身化等諸多方面得到了展現。復合材料技術已成為影響飛機發展的關鍵技術之一。
美國空軍F-117隱身戰斗機採用碳纖維增強環氧復合材料做成骨架和外面的蒙皮,沒有金屬表面,也沒有金屬鉚釘反射雷達波;美國1989年首飛的隱身轟炸機B-2,復合材料占結構用量的50%;F-22基本構型沒有採用特殊的外形隱身措施,沒有過多犧牲機動性,而它傳奇般的隱身性能主要是通過復合材料和隱身塗料完成的。而F-35中應用復合材料已佔到結構質量的30%~35%;「旅遊者號」(Voyager)全復合材料飛機於1986年創下了不加油、不著陸連續環球飛行9天,航程40 252千米的世界紀錄,其碳纖維結構用量大於90%,飛機的結構重量只有453 千克,載油量3噸。
軍用飛機中復合材料結構件的成功應用,給民用飛機的材料選擇帶來了巨大的影響,波音、空客等干線客機中復合材料在結構材料中的應用比例也越來越高。空客A380是550座級超大型寬體客機,整機採用了較多的復合材料(23%),大大減輕了飛機重量,減少了油耗和排放,降低了營運成本。波音787「夢想」飛機則是200座~300座級飛機,航程隨具體型號不同可覆蓋6 500~16 000千米。它使用碳纖維、有機纖維、玻璃纖維增強樹脂以及各種混雜纖維的復合材料製造了機翼前緣、壓力容器、引擎罩等構件,不僅使結構重量減輕,還提高了飛機的各種飛行性能。波音787中復合材料的用量達50%,這可使其比目前同類飛機節省20%的燃油消耗。空客公司由於受到波音公司復合材料高用量的威脅,計劃在A350飛機上將復合材料的用量再次提高到53%,以形成與波音787飛機的競爭。而倍受國人關注的國產大飛機C919復合材料的用量也將達到 20%以上。復合材料在飛機上的應用經歷了從次承力構件—尾翼主承力構件—機翼—機身主承力構件的發展,已成為飛機結構的主要材料。

❸ 飛機復合材料行業發展前景怎麼樣

復合材料在客機上的結構重量日益增加,如今已經開始廣泛應用於民用航空製造業。一些先版進客機的復合材料重權量已經超過金屬材料,占其總重量的50%以上,這也成為未來民機在材料選擇方面的一種趨勢。
據《中國復合材料行業發展前景預測與投資戰略規劃分析報告》顯示,目前世界上最先進的民用飛機,如波音787、空客A350在復合材料的應用上都超過了整個機體材料的50%。復合材料已經可以部分替代飛機上的金屬材料了,但是不可能全部替代。實際上,我國復合材料的研製水平與發達國家相比差距還很大,比如碳纖維材料本身。

❹ 美國的哥倫比亞號太空梭在製造過程中應用了大量的先進復合材料,其中被覆在整個機身上的防熱瓦片,使航

A、陶來瓷基復合材料具有源優異的耐高溫性能,主要用作高溫及耐磨製品,防熱瓦片具有耐高溫的性能,所以是陶瓷基復合材料,故A正確.
B、合成樹脂基復合材料具有重量輕、比強度高、耐腐蝕、易於加工等優點,在汽車工業中得到廣泛應用,故B錯誤.
C、玻璃鋼的特點是質輕而硬,不導電,機械強度高,回收利用少,耐腐蝕,可以代替鋼材製造機器零件和汽車、船舶外殼等,故C錯誤.
D、金屬基復合材料具有良好的導熱性、導電性、防潮、耐磨、不會老化、不會產生污染,應用於機械、航天、汽車工業等領域,故D錯誤.
故選A.

❺ 看看航空航天材料,才知道什麼是先進材料

先來看看什麼是復合材料和高性能復合材料?復合材料,是由兩種或兩種以上不同性質的材料,通過物理或化學的方法,在宏觀上組成具有新性能的材料。各種材料在性能上互相取長補短,產生協同效應,使復合材料的綜合性能優於原組成材料而滿足各種不同的要求。復合材料的基體材料分為金屬和非金屬兩大類。金屬基體常用的有鋁、鎂、銅、鈦及其合金。非金屬基體主要有合成樹脂、橡膠、陶瓷、石墨、碳等。增強材料主要有玻璃纖維、碳纖維、硼纖維、芳綸纖維、碳化硅纖維、石棉纖維、晶須、金屬絲和硬質細粒等。復合材料應用廣泛,主要在基礎建設和建築工程領域、交通運輸領域、汽車復合材料、能源與環保領域、航空航天領域。其中,風電、高鐵和汽車、高溫氣脫硫、軍工用復合材料是發展熱點領域。高性能復合材料顧名思義,就是性能較高的復合材料。按照合成的原料不同,高性能纖維主要分為碳纖維、芳綸纖維、特殊玻璃纖維、超高分子聚乙烯纖維等,其中碳纖維、芳綸纖維、超高分子聚乙烯纖維是當今世界三大高性能纖維,而碳纖維尤其值得關注。據美國市場研究機構提供的數字,2015年前,全球碳纖維市場需求將保持13%的增長,而我國對碳纖維的需求增速卻明顯快於全球。據估計,至2015年,我國對碳纖維總體需求將達1.6萬噸。而根據新材料產業規劃,「十二五」末我國碳纖維產能為1.2萬噸。而目前碳纖維新材料已進入快速擴張期,未來航天航空、油氣開發、汽車、電子等領域將帶動碳纖維材料需求大幅增長。據了解,日、美、德等國技術壟斷集中度較高,原絲、炭化等關鍵環節由日、美等國控制,其中,小絲束碳纖維生產基本上被東麗、東邦和三菱等日本企業所控制,三者市場佔有率達到70%左右,大絲束則主要由美國卓爾泰克、德國西格里和日本東邦控制,市場佔有率為80%左右。和其他的新材料面臨的「技術壁壘」一樣,從2000年開始,中國政府投入專項資金推動碳纖維技術的研發,目前利用自主技術研製的少數國產碳纖維產品已經達到了國際同類產品水平,但中國碳纖維產品數量的國有化率卻依然不高。樹脂基復合材料以有機聚合物為基體,添加相應的纖維增強體構成,也稱纖維增強塑料,是目前技術較為成熟、應用最為廣泛的一類復合材料。單一材料是日常生活中使用最多的物質,無論有機物還是無機物。隨著科學技術的不斷革新,人們對物質性能的要求越來越高。因此,復合材料的出現,受到了市場極大的歡迎。復合材料是由兩種或兩種以上不同物質以不同方式組合而成的,能夠融合和發揮各種材料的優點,擴大材料的應用范圍。而樹脂基復合材料就是其中的一大類。樹脂基復合材料以有機聚合物為基體,添加相應的纖維增強體構成,也稱纖維增強塑料,是目前技術較為成熟、應用最為廣泛的一類復合材料。根據纖維增強體的不同,樹脂基復合材料可劃分為玻璃纖維增強塑料、碳纖維復合材料、芳綸纖維增強塑料等。「玻璃纖維增強塑料在我國的市場、產值、應用都已達世界先進水平,各品種都能滿足市場需求。而碳纖維復合材料則主要運用於航空航天領域,在國內發展很快。」中國材料研究學會咨詢部主任唐見茂教授。復合材料橫跨航天能源多領域樹脂基復合材料早在1932年就出現在了美國,主要用於航空航天方面,直到第二次世界大戰結束後,這種材料才開始擴展運用到民用領域。它的生產工藝也從最初的手糊成型技術,發展到目前纖維纏繞成型技術、真空袋和壓力帶成型技術、噴射成型技術多種工藝並存,樹脂基復合材料的質量和生產效率大幅提高。而我國樹脂基復合材料起步就顯得較晚。從1958年才開始研究生產,首先用於軍工製品,而後逐漸擴展到民用。另外,我國的生產工藝還是以國外引進為主。目前,樹脂基復合材料產業作為新興產業,已被列為我國「十二五新材料規劃」的發展重點。規劃提出了低成本、高比強、高比模和高穩定性的目標,希望攻克樹脂基復合材料的原料制備、工業化生產及配套裝備等共性關鍵問題。樹脂基復合材料是多種物質的結合,具有多種物質的復合效應。具體表現方面,首先是質輕、力學性能好,具有比強度高、比模量大、抗疲勞性能及減震性能好等優點。其次,可設計性優良。能夠通過改變纖維的質量分數和分布方向、添加適當添加劑使物質潛在的性能集中到必要的方向上。再次,復合材料的耐化學腐蝕性、電性能、熱性能都能表現出優良的狀態。正因為復合材料有上述特性,被廣泛地運用於航空航天、能源工業、建築工業、軌道交通等領域,生產的產品包括汽車部件、飛機機翼、雷達、復合管道、風電葉片等。在樹脂基復合材料中,玻璃纖維增強塑料在中國的市場比較成熟,其市場、產值、應用都已達世界先進水平,應用較為廣泛。而碳纖維復合材料則屬於一種高端應用,代表了一個國家的整體科技水平和工業化水平,主要應用於航空航天等領域。根據規劃,到2015年,樹脂基復合材料產量將達到530萬噸,其中熱固性復合材料產量300萬噸,熱塑性復合材料用量230萬噸,將重點發展基礎設施和建築、能源及環保、交通運輸及航天航空等相關的復合材料系列產品及其裝備製造,特別注重新能源領域、海洋石油開發領域、電力建設領域、環保領域以及碳纖維復合材料為代表的先進復合材料的基礎研究和應用研究與開發。

❻ 先進復合材料在軍用飛機上,民用飛機上有什麼應用

先進樹脂基復合材料在航空、航天飛行器結構上的應用獲得了成功,現已成為與鋁合金、鈦合金、鋼並駕齊驅的四大結構材料之一。先進樹脂基復合材料的用量已經成為飛機先進性的一個重要標志。
復合材料飛機結構技術是以實現高結構效率和改善飛機氣動彈性與隱身等綜合性能為目的的高新技術。先進樹脂基復合材料的應用,對飛機結構輕質化、小型化和高性能化起著至關重要的作用。復合材料結構特點和應用效果,在高性能戰斗機實現隱身、超聲速巡航、過失速飛行控制,前掠翼飛機先進氣動布局的實際應用,艦載攻擊/戰斗機耐腐蝕性改善和輕質化,直升機長壽命和輕質與隱身化等諸多方面得到了展現。復合材料技術已成為影響飛機發展的關鍵技術之一。
美國空軍F-117隱身戰斗機採用碳纖維增強環氧復合材料做成骨架和外面的蒙皮,沒有金屬表面,也沒有金屬鉚釘反射雷達波;美國1989年首飛的隱身轟炸機B-2,復合材料占結構用量的50%;F-22基本構型沒有採用特殊的外形隱身措施,沒有過多犧牲機動性,而它傳奇般的隱身性能主要是通過復合材料和隱身塗料完成的。而F-35中應用復合材料已佔到結構質量的30%~35%;「旅遊者號」(Voyager)全復合材料飛機於1986年創下了不加油、不著陸連續環球飛行9天,航程40 252千米的世界紀錄,其碳纖維結構用量大於90%,飛機的結構重量只有453 千克,載油量3噸。
軍用飛機中復合材料結構件的成功應用,給民用飛機的材料選擇帶來了巨大的影響,波音、空客等干線客機中復合材料在結構材料中的應用比例也越來越高。空客A380是550座級超大型寬體客機,整機採用了較多的復合材料(23%),大大減輕了飛機重量,減少了油耗和排放,降低了營運成本。波音787「夢想」飛機則是200座~300座級飛機,航程隨具體型號不同可覆蓋6 500~16 000千米。它使用碳纖維、有機纖維、玻璃纖維增強樹脂以及各種混雜纖維的復合材料製造了機翼前緣、壓力容器、引擎罩等構件,不僅使結構重量減輕,還提高了飛機的各種飛行性能。波音787中復合材料的用量達50%,這可使其比目前同類飛機節省20%的燃油消耗。空客公司由於受到波音公司復合材料高用量的威脅,計劃在A350飛機上將復合材料的用量再次提高到53%,以形成與波音787飛機的競爭。而倍受國人關注的國產大飛機C919復合材料的用量也將達到 20%以上。復合材料在飛機上的應用經歷了從次承力構件—尾翼主承力構件—機翼—機身主承力構件的發展,已成為飛機結構的主要材料。

❼ 先進復合材料在航天航空工業中的主要應用

T300 碳纖維/樹脂基復合材料已經在飛行器上廣泛作為結構材料使用,目前應用較多的為拉伸強度達內到容5.5GPa,斷裂應變高出T300 碳纖維的30%的高強度中模量碳纖維T800H纖維。軍品碳纖維增強樹脂基復合材料是生產武器裝備的重要材料。在戰斗機和直升機上,碳纖維復合材料應用於戰機主結構、次結構件和戰機特殊部位的特種功能部件。國外將碳纖維/環氧和碳纖維/雙馬復合材料應用在戰機機身、主翼、垂尾翼、平尾翼及蒙皮等部位,起到了明顯的減重作用,大大提高了抗疲勞、耐腐蝕等性能,數據顯示採用復合材料結構的前機身段,可比金屬結構減輕質量31.5%,減少零件61.5%,減少緊固件61.3%;復合材料垂直安定面可減輕質量32.24%。用軍機戰術技術性能的重要指標,結構重量系數來衡量,國外第四代軍機的結構重量系數已達到27~28%。未來以F-22為目標的背景機復合材料用量比例需求為35%左右,其中碳纖維復合材料將成為主體材料。國外一些輕型飛機和無人駕駛飛機,已實現了結構的復合材料化。目前主要使用的是T300級和T700級小絲束碳纖維增強的復合材料

❽ 復合材料在航空、航天領域中有重要的應用,請舉例說明。

自從先進復合材料投入應用以來,有三件值得一提的成果。第一件是美國全部用碳纖維復內合材料製成一架八容座商用飛機——里爾芳2100號,並試飛成功,這架飛機僅重567kg,它以結構小巧重量輕而稱奇於世。第二件是採用大量先進復合材料製成的哥倫比亞號太空梭,這架太空梭用碳纖維/環氧樹脂製作長18.2m、寬4.6m的主貨艙門,用凱芙拉纖維/環氧樹脂製造各種壓力容器,用硼/鋁復合材料製造主機身隔框和翼梁,用碳/碳復合材料製造發動機的噴管和喉襯,發動機組的傳力架全用硼纖維增強鈦合金復合材料製成,被覆在整個機身上的防熱瓦片是耐高溫的陶瓷基復合材料。第三件是在波音-767大型客機上使用了先進復合材料作為主承力結構,這架可載80人的客運飛機使用碳纖維、有機纖維、玻璃纖維增強樹脂以及各種混雜纖維的復合材料製造了機翼前緣、壓力容器、引擎罩等構件,不僅使飛機結構重量減輕,還提高了飛機的各種飛行性能。

❾ 美國的哥倫比亞號太空梭在製造過程中應用了大量的先進復合材料,其中被覆在整個機身

答案A
太空梭機身上使用的隔熱陶瓷瓦是由纖維和陶瓷復合而成的材料製成,其增強體多回為碳纖維答、碳化硅纖維和氧化硅纖維;基體的主要成分是各種陶瓷。這種纖維增強陶瓷保持了陶瓷耐高溫的特性,又增強了陶瓷的韌性,使太空梭能安全地穿越大氣層返回地球。

❿ 世界上最先進的復材大飛機是怎樣

目前,復合材料使用最多的飛機,應該是美國的B-2隱身轟炸機。
這種飛機,是飛翼式的,看起來就像只有一個機翼一樣。
至於圖片,你可以網上直接搜索,就會有的。

熱點內容
三個字的電影名 發布:2024-08-19 09:10:03 瀏覽:417
台灣紅羊經典電影 發布:2024-08-19 09:02:17 瀏覽:767
搞笑電影范冰冰梁家輝開戰 發布:2024-08-19 08:53:18 瀏覽:917
免費午夜激情 發布:2024-08-19 08:42:15 瀏覽:831
40分鍾左右的英語電影 發布:2024-08-19 08:28:43 瀏覽:695
電影宋基美娜 發布:2024-08-19 08:27:04 瀏覽:942
宿舍都變成女的的電影 發布:2024-08-19 07:59:35 瀏覽:897
台灣恐怖片喪屍 發布:2024-08-19 07:57:21 瀏覽:179
免費觀看qq群 發布:2024-08-19 07:53:00 瀏覽:921
4級片名字 發布:2024-08-19 07:39:14 瀏覽:553