纖維增強復合材料的組成和特點
1. 高性能增強纖維復合材料具有哪些優點
現在在實用層面的高性能纖維主要為三種,碳纖維,芳綸和超高分子量聚乙烯。專
而這三種高性能纖維屬當其作為纖維使用在紗線,纜繩上或者作為紡織面料使用時,具有較多可討論的獨特性質。
但是,當其製成復合材料之後,通常是和樹脂復合,製成所謂的FRP之後,由於其材料主要結構的基體部分主要由樹脂構成,所以復合材料本身的大部分性能,比如環境耐受性,熱性能和電學性能等都主要是由作為基體的樹脂來決定的,本身不具有所謂「高性能纖維復合材料」的特殊性質,高性能纖維在FRP中,僅僅起到了在纖維軸向上提供了一個超高強度和超高模量的增強效果,如果其用以復合的樹脂基體的模量並不高的話,那麼增強纖維所提供的模量也並沒有什麼作用,最終表現出來的作為高性能纖維復合材料的特殊優點,僅僅體現在非常高的物理破壞強度這一點上。
如果不那麼嚴謹的說,可以說高性能增強纖維復合材料的比強度較高。即在同等強度要求下,其重量較低。
2. 纖維增強樹脂復合材料有哪幾類,各有什麼特點
纖維一般作為增強材料,樹脂作為基體,主要提高材料強度及抗沖擊強度。纖維和樹專脂復合:纖維屬通過樹脂容器浸漬後固化,有很多工藝:纏繞;人工;拉擠等工藝,主要是根據產品來確定工藝。
纖維增強樹脂使用樹脂主要有兩大類:熱固包括,環氧、酚醛、不飽和聚酯等等;熱塑包括,尼龍、聚乙烯、聚酯等等。所有都必須依據產品來定
3. 簡述復合纖維材料的優點
復合材料有特性:
1、復合材料的比強度和比剛度較高。材料的強度除以密度稱為比強度;材料的剛度除以密度稱為比剛度。這兩個參量是衡量材料承載能力的重要指標。比強度和比剛度較高說明材料重量輕,而強度和剛度大。這是結構設計,特別是航空、航天結構設計對材料的重要要求。現代飛機、導彈和衛星等機體結構正逐漸擴大使用纖維增強復合材料的比例。
2、 復合材料的力學性能可以設計,即可以通過選擇合適的原材料和合理的鋪層形式,使復合材料構件或復合材料結構滿足使用要求。例如,在某種鋪層形式下,材料在一方向受拉而伸長時,在垂直於受拉的方向上材料也伸長,這與常用材料的性能完全不同。又如利用復合材料的耦合效應,在平板模上鋪層製作層板,加溫固化後,板就自動成為所需要的曲板或殼體。
3、復合材料的抗疲勞性能良好。一般金屬的疲勞強度為抗拉強度的40~50%,而某些復合材料可高達70~80%。復合材料的疲勞斷裂是從基體開始,逐漸擴展到纖維和基體的界面上,沒有突發性的變化。因此,復合材料在破壞前有預兆,可以檢查和補救。纖維復合材料還具有較好的抗聲振疲勞性能。用復合材料製成的直升飛機旋翼,其疲勞壽命比用金屬的長數倍。
4、復合材料的減振性能良好。纖維復合材料的纖維和基體界面的阻尼較大,因此具有較好的減振性能。用同形狀和同大小的兩種粱分別作振動試驗,碳纖維復合材料粱的振動衰減時間比輕金屬粱要短得多。
5、 復合材料通常都能耐高溫。在高溫下,用碳或硼纖維增強的金屬其強度和剛度都比原金屬的強度和剛度高很多。普通鋁合金在400℃時,彈性模量大幅度下降,強度也下降;而在同一溫度下,用碳纖維或硼纖維增強的鋁合金的強度和彈性模量基本不變。復合材料的熱導率一般都小,因而它的瞬時耐超高溫性能比較好。
6、復合材料的安全性好。在纖維增強復合材料的基體中有成千上萬根獨立的纖維。當用這種材料製成的構件超載,並有少量纖維斷裂時,載荷會迅速重新分配並傳遞到未破壞的纖維上,因此整個構件不至於在短時間內喪失承載能力。
復合材料的成型工藝簡單。纖維增強復合材料一般適合於整體成型,因而減少了零部件的數目,從而可減少設計計算工作量並有利於提高計算的准確性。另外,製作纖維增強復合材料部件的步驟是把纖維和基體粘結在一起,先用模具成型,而後加溫固化,在製作過程中基體由流體變為固體,不易在材料中造成微小裂紋,而且固化後殘余應力很小。
4. 復合材料主要有哪些性能特點
性能特點復:
復合材料中以纖維增強材制料應用最廣、用量最大。其特點是比重小、比強度和比模量大。
例如碳纖維與環氧樹脂復合的材料,其比強度和比模量均比鋼和鋁合金大數倍,還具有優良的化學穩定性、減摩耐磨、自潤滑、耐熱、耐疲勞、耐蠕變、消聲、電絕緣等性能。
非金屬基復合材料由於密度小,用於汽車和飛機可減輕重量、提高速度、節約能源。用碳纖維和玻璃纖維混合製成的復合材料片彈簧,其剛度和承載能力與重量大5倍多的鋼片彈簧相當。
(4)纖維增強復合材料的組成和特點擴展閱讀
滿足復合材料的條件:
1、復合材料必須是人造的,是人們根據需要設計製造的材料。
2、 復合材料必須由兩種或兩種以上化學、物理性質不同的材料組分,以所設計的形式、比例、分布組合而成,各組分之間有明顯的界面存在。
3、它具有結構可設計性,可進行復合結構設計。
4、復合材料不僅保持各組分材料性能的優點,而且通過各組分性能的互補和關聯可以獲得單一組成材料所不能達到的綜合性能。
5. 在纖維增強復合材料中,連續纖維增強和短纖維增強各有什麼特點
長纖維對設備磨損來較大源。材料對比:長纖維經加工後長短比大,增強明顯,纖熔性好,加工過程中摩擦熱大,因纖維過長材料變形量大。短纖維,易加工摩擦熱小,材料穩定性好,增加也不錯,但纖熔性差一些,可以加入份量更大。短纖維種類比長的還要多,不同的處理條件,長度,大小,強度,看你選有那一種了,在同等結果情況下短纖維貴300-600元每噸。
6. 纖維增強復合材料有何特點……
最大特點是復合後的材料性能優於各單一組分的性能,且兼備各單一組分的優點。
7. 纖維增強陶瓷復合材料的優點有哪些
纖維增強復合材料
由增強纖維和基體組成。纖維(或晶須)的直徑很小,一般在l0μm以下,缺陷較少又小,斷裂應變不大於百分之三,是脆性材料。容易損傷、斷裂和受到腐蝕。
基體相對於纖維來說強度和模量要低得多但可經受較大的應變往往具有粘彈性和彈塑性是韌性材料。
纖維增強復合材料由纖維的長短可分為短纖維增強復合材料、長纖維復合材料和雜亂短纖維增強復合材料。纖維增強復合材料由於纖維和基體的不同品種很多如碳纖維增強環氧、硼纖維增強環氧、Kevlar纖維增強環氧、Kevlar纖維增強橡膠、玻璃纖維增強塑料、硼纖維增強鋁、石墨纖維增強鋁、碳纖維增強陶瓷、碳纖維增強碳和玻璃纖維增強水泥等。
纖維增強復合材料的性能體現在以下方面:
比強度高比剛度大成型工藝好材料性能可以設計抗疲勞性能好。破損安全性能好。多數增強纖維拉伸時的斷裂應變很小、疊層復合材料的層間剪切強度和層間拉伸強度很低、影響復合材料性能的因素很多會引起復合材料性能的較大變化、用硼纖維、碳纖維和碳化硅纖維等高性能纖維製成的樹脂基復合材料雖然某些性能很好但價格昂貴、纖維增強復合材料與傳統的金屬材料相比具有較高的強度和模量較低的密度、纖維增強復合材料還具有獨特的高阻尼性能因而能較好地吸收振動能量同時減少對相鄰結構件的影響
顆粒增強復合材料
顆粒增強體是用以改善復合材料的力學性能,提高斷裂功、耐磨性、硬度,增進耐蝕性的顆粒狀材料。如SiC、TiC、B4C、WC、Al2O3、MoS2、Si3N4、TiB2、BN、C、石墨~~~等
顆粒增強金屬基復合材料由於制備工藝簡單、成本較低微觀組織均勻、材料性能各向同性且可以採用傳統的金屬加工工藝進行二次加工等優點,已經成為金屬基復合材料領域最重要的研究方向。顆粒增強金屬基復合材料的主要基體有鋁、鎂鈦、銅和鐵等,其中鋁基復合材料發展最快;而鎂的密度更低,有更高的比強度、比剛度,而且具有良好的阻尼性能和電磁屏蔽等性能,鎂基復合材料正成為繼鋁基之後的又一具有競爭力的輕金屬基復合材料。鎂基復合材料因其密度小,且比鎂合金具有更高的比強度、比剛度、耐磨性和耐高溫性能,受到航空航天、汽車、機械及電子等高技術領域的重視。顆粒增強鎂基復合材料與連續纖維增強、非連續
(短纖維、晶須等)纖維增強鎂基復合材料相比,具有力學性能呈各向同性、制備工藝簡單、增強體價格低廉、易成型、易機械加工等特點,是目前最有可能實現低成本、規模化商業生產的鎂基復合材料
8. 復合材料的特性有哪些
復合材料有特性:
1、復合材料的比強度和比剛度較高。材料的強度除以密度稱為比強度;材料的剛度除以密度稱為比剛度。這兩個參量是衡量材料承載能力的重要指標。比強度和比剛度較高說明材料重量輕,而強度和剛度大。這是結構設計,特別是航空、航天結構設計對材料的重要要求。現代飛機、導彈和衛星等機體結構正逐漸擴大使用纖維增強復合材料的比例。
2、 復合材料的力學性能可以設計,即可以通過選擇合適的原材料和合理的鋪層形式,使復合材料構件或復合材料結構滿足使用要求。例如,在某種鋪層形式下,材料在一方向受拉而伸長時,在垂直於受拉的方向上材料也伸長,這與常用材料的性能完全不同。又如利用復合材料的耦合效應,在平板模上鋪層製作層板,加溫固化後,板就自動成為所需要的曲板或殼體。
3、復合材料的抗疲勞性能良好。一般金屬的疲勞強度為抗拉強度的40~50%,而某些復合材料可高達70~80%。復合材料的疲勞斷裂是從基體開始,逐漸擴展到纖維和基體的界面上,沒有突發性的變化。因此,復合材料在破壞前有預兆,可以檢查和補救。纖維復合材料還具有較好的抗聲振疲勞性能。用復合材料製成的直升飛機旋翼,其疲勞壽命比用金屬的長數倍。
4、復合材料的減振性能良好。纖維復合材料的纖維和基體界面的阻尼較大,因此具有較好的減振性能。用同形狀和同大小的兩種粱分別作振動試驗,碳纖維復合材料粱的振動衰減時間比輕金屬粱要短得多。
5、 復合材料通常都能耐高溫。在高溫下,用碳或硼纖維增強的金屬其強度和剛度都比原金屬的強度和剛度高很多。普通鋁合金在400℃時,彈性模量大幅度下降,強度也下降;而在同一溫度下,用碳纖維或硼纖維增強的鋁合金的強度和彈性模量基本不變。復合材料的熱導率一般都小,因而它的瞬時耐超高溫性能比較好。
6、復合材料的安全性好。在纖維增強復合材料的基體中有成千上萬根獨立的纖維。當用這種材料製成的構件超載,並有少量纖維斷裂時,載荷會迅速重新分配並傳遞到未破壞的纖維上,因此整個構件不至於在短時間內喪失承載能力。
7、復合材料的成型工藝簡單。纖維增強復合材料一般適合於整體成型,因而減少了零部件的數目,從而可減少設計計算工作量並有利於提高計算的准確性。另外,製作纖維增強復合材料部件的步驟是把纖維和基體粘結在一起,先用模具成型,而後加溫固化,在製作過程中基體由流體變為固體,不易在材料中造成微小裂紋,而且固化後殘余應力很小。
9. 纖維增強金屬基復合材料的特點
1,具有纖維優異的力學性能。2,同時具有金屬良好的導電﹑導熱性能。這是復合材料領域重要的發展方向。