當前位置:首頁 » 粉末冶金 » 金屬基復合材料應用狀況

金屬基復合材料應用狀況

發布時間: 2021-03-15 01:39:34

金屬基生物醫用復合材料的研究現狀與應用

你好!網上信息很多,「復制-粘貼」的工作我就不做了。簡單談一下吧。
金屬基生物材料一內般都容是Bioinert Materials,它在生物環境中能保持穩定,不發生或僅發生微弱化學反應。生物惰性材料植入體內後,在身體內基本不發生化學反應和降解反應。它所引起的組織反應,是圍繞植入體的表面形成一薄層包被性纖維膜,與組織間的結合主要是靠組織長入其粗糙不平的表面或多孔中,從而形成一種機械嵌合即形態結合。現在的發展趨勢,就是金屬材料和生物陶瓷結合使用(另一個趨勢是無機-有機材料結合)。例如在鈦金屬機體上塗覆HA或者TCP,這樣兼顧了生物金屬的機械性能和生物陶瓷的生物活性、生物降解性和耐磨擦腐蝕性。因為從醫學應用的角度來看,金屬類生物惰性材料,與人體組織沒有活性結合,因此在臨床應用上存在不少問題和缺陷。如金屬材料長期使用,容易被腐蝕並溶出有一定毒性的金屬元素。我是搞生物陶瓷的,如有興趣,可以繼續交流。

❷ 金屬基復合材料的性能有什麼特點,其應用如何

復合材料中以纖維增強材料應用最廣、用量最大。其特點是比重小、比強度和專比模量大。例屬如碳纖維與環氧樹脂復合的材料,其比強度和比模量均比鋼和鋁合金大數倍,還具有優良的化學穩定性、減摩耐磨、自潤滑、耐熱、耐疲勞、耐蠕變、消聲、電絕緣等性能。石墨纖維與樹脂復合可得到熱膨脹系數幾乎等於零的材料。纖維增強材料的另一個特點是各向異性,因此可按製件不同部位的強度要求設計纖維的排列。以碳纖維和碳化硅纖維增強的鋁基復合材料,在500℃時仍能保持足夠的強度和模量。碳化硅纖維與鈦復合,不但鈦的耐熱性提高,且耐磨損,可用作發動機風扇葉片。碳化硅纖維與陶瓷復合, 使用溫度可達1500℃,比超合金渦輪葉片的使用溫度(1100℃)高得多。碳纖維增強碳、石墨纖維增強碳或石墨纖維增強石墨,構成耐燒蝕材料,已用於航天器、火箭導彈和原子能反應堆中。非金屬基復合材料由於密度小,用於汽車和飛機可減輕重量、提高速度、節約能源。用碳纖維和玻璃纖維混合製成的復合材料片彈簧,其剛度和承載能力與重量大5倍多的鋼片彈簧相當。

❸ 金屬復合材料的概念、性能及用途

(1)名詞定義:結合兩種或兩種以上不同相的物質以物理方式結合而成,擷取各組回成成分的優點,以答構成需要之結構材。這些材料也必須合於下列四樣條件:
a.必須由人類製造成(此有別於一些已存在於自然界中的天然復合材料,如木材)。
b.必須由兩種或兩種以上化性不同的物質所組成。
c. 每一組成物質均具有三度空間的體積(因為由薄片相壓或焊接所成者不屬此類)。
d.必須具有一些特殊的性質,而此種性質不是各個組成物質本來所有的。
(2)復合材料包括三大領域:金屬基復合材料MetalMatrix Composites(MMC』s)、陶瓷基復合材料Ceramic MatrixComposites(CMC』s)與高分子復合材料Polymer MatrixComposites(PMC』s包括熱固性與熱塑性)等,目前我們使用的是高分子復合材料,其中以碳纖維用於復合材料中而較傳統玻璃纖維之復合材料具更佳之物理特性,特稱為高性能復合材料(ACM Advanced Composite Material)。

❹ 與聚合物基復合材料相比,金屬基復合材料的優,缺點有哪些

復合材料中以纖維增強材料應用最廣、用量最大。其特點是比重小、比強版度和比模量大。例如碳纖權維與環氧樹脂復合的材料,其比強度和比模量均比鋼和鋁合金大數倍,還具有優良的化學穩定性、減摩耐磨、自潤滑、耐熱、耐疲勞、耐蠕變、消聲、電絕緣等性能。石墨纖維與樹脂復合可得到熱膨脹系數幾乎等於零的材料。纖維增強材料的另一個特點是各向異性,因此可按製件不同部位的強度要求設計纖維的排列。以碳纖維和碳化硅纖維增強的鋁基復合材料,在500℃時仍能保持足夠的強度和模量。碳化硅纖維與鈦復合,不但鈦的耐熱性提高,且耐磨損,可用作發動機風扇葉片。碳化硅纖維與陶瓷復合,
使用溫度可達1500℃,比超合金渦輪葉片的使用溫度(1100℃)高得多。碳纖維增強碳、石墨纖維增強碳或石墨纖維增強石墨,構成耐燒蝕材料,已用於航天器、火箭導彈和原子能反應堆中。非金屬基復合材料由於密度小,用於汽車和飛機可減輕重量、提高速度、節約能源。用碳纖維和玻璃纖維混合製成的復合材料片彈簧,其剛度和承載能力與重量大5倍多的鋼片彈簧相當。

❺ 什麼是金屬基復合材料

與非金屬基復合材料相比,金屬基復合材料的潛力尚未充分發揮,應用面比較窄,成熟的品種很少。這種情況一直到20世紀70年代中期才略有好轉。1974年,美國材料咨詢局第一次肯定了研製和使用金屬基復合材料的正確性,表示對這項工作要重視和支持。這主要是航空、航天、能源工業的發展提出的一系列嚴格的要求,看來只有依賴金屬基復合材料和精陶瓷才能夠解決。金屬基復合材料所用的增強劑除了石墨、硼(硼硅克)纖維外,還有高強度鋼絲、高熔點合金絲(鎢、鉬)和晶須(氧化鋁、碳化硅)等。這些纖維分別用來與鋁、鎂、鈦、銅和鎳鈷基高溫合金組成復合材料。

硼—鋁復合材料的研製起步最早,取得了一定效果。這種材料用於太空梭的中機身構架管,可減重80公斤。採用硼—鋁復合材料的飛機為數不多,目前只有F—111、S—3A等,此外還有「阿特拉斯」導彈的殼體。

硼—鋁復合材料最有希望的潛在用途是製造噴氣發動機的壓氣機及風扇葉片,如用其代替鈦合金可減重33%,節省成本45%左右。美國幾家主要發動機公司如普拉特•惠特尼、通用電器、TRW等均進行過硼—鋁復合材料風扇葉片的研究。JT8D發動機上試用硼—鋁壓氣機葉片,工作溫度達到300℃,此外,在TF—41—P3發動機上還試用了鈹—鋁壓氣機葉片。

石墨—鋁復合材料也具有很高的比強度和比模量,適合直升機、導彈、坦克和突擊浮橋使用。CH47直升機的傳動機,採用了多層石墨—鋁護板,大大減少了振動噪音,此外石墨—鋁和石墨—鎂將被用在人造衛星和大型空間結構上,如衛星支撐架、平面天線體、可折式拋物面天線助等。

鎳基和鈷基高溫合金使用高熔點鉬、鎢絲式晶須增強後成為耐熱復合材料。這項工作在許多國家開展多年,目的是為了滿足工作溫度和載荷日益提高的先進渦輪發動機的需要。利用這種耐熱復合材料製成實心渦輪葉片,可以提高渦輪的溫度和轉數,減少渦輪級數和冷卻氣體的消耗,為改進發動機創造了條件。採用加有二氧化釷和碳化鉿的鎢絲增強復合材料,工作溫度為1160~1200℃,至少比目前的渦輪工作溫度提高100℃。

利用氧化鋁晶須氈或單晶纖維增強熔點鉬鎢後,可以耐更高的溫度,在1650℃時的強度為鎢的兩倍,作為火箭噴口材料已通過試驗。

以鋼板為基體的各種層壓板也是一種通用的復合材料。例如波音767和757飛機上採用的一種包不銹鋼鋁板,可以代替鈦合金作為發動機的防火材料,重量輕而價格低。

另一種是以鋼板為基、多孔青銅的中間層、聚四氟乙烯塑料為表面層的三層復合材料,可用於製造載重汽車底盤襯套、機床導軌和在高溫腐蝕介質中工作的軸承

超導電纜也是一種復合材料,它是以銅—錫合金為基體,埋人295根鈮線後組成,經過擴散處理在界面形成七微米厚的Nb2Sn金屬化合物,它具有超導性,可以用於製造磁懸浮高速列車、核聚變反應堆電磁鐵、儲能超導感應器、超導發電機等新產品。

❻ 金屬基復合材料的問題

金屬基復合材料存在的主要問題是金屬復合材料製造工藝復雜、造價昂貴,尚未能在工業規模生產中應用。

❼ 金屬基復合材料就業情況如何

不錯!材料和機械是國民經濟的裝配部門!我們國家很多高新技術上不去,很專大一部分原因是材料的屬落後,研製不出來好的材料,進口依賴程度比較大!就我本身學校哦來說,我們學校是材料、機械、測控三個專業是就業大戶,我是航空院校的。材料專業的學生去珠江三角和長江三角發展的都比較多,這兩塊要人多!特別是珠三角!建議樓主好好學,尤其是材料的一些性能方面還有模具方面,模具在珠三角是很吃香的,工資也不菲!當然了,前提是樓主一定要學好!

❽ 金屬基復合材料論文

文關鍵詞:金屬基復合材料有效性能結構拓撲優化

論文摘要:金屬基復合材料綜合了作為基體的金屬結構材料和增強物兩者的優點,具有高的強度性能和彈性模量、良好的疲勞性能等特點。由於製作工藝相對容易,和價格低廉,顆粒增強金屬基復合材料體現出了廣泛的商業價值,金屬基復合材料首先在航天和航空上得到應用,隨著其價格的不斷降低,它們在汽車、電子、機械等工業部門的應用也越來越廣。為此全球各大公司和研究機構對它的研究和應用開發正多層次大面積地展開。筆者閱讀了大量相關文獻,進而綜述了近些年來國內外學者對金屬基復合材料的研究,具有一定的現實意義。

一、顆粒隨機分布金屬基復合材料有效性能研究
九十年代中期Povirk, Gusev等人就研究證明了可以用一個有限體積的代表體元來代替整體復合材料,模擬其細觀結構,從而建立復合材料的宏觀性能同其組分材料性能及細觀結構之間的定量關系。
隨著計算機技術的高速發展,數值分析方法在復合材料力學分析中成為不可缺少的工具,在做計算數值模擬時,建立合適的數學模型,是進行數值模擬計算復合材料等效性能的基礎。
基於有限元法的多尺度等效性能計算是目前一種行之有效的研究復合材料細觀結構與宏觀力學行為之間關系的重要方法。採用這種方法的前提是建立復合材料的有限元模型,包括隨機顆粒分布區域的幾何建模和網格剖分,然後才能進行多尺度計算。
對於復合材料等效性能計算的數值方法,國內外已經發展了名目繁多的各種數值方法。一般來說,可以分為反分析法、直接分析法。其中反分析法實質就是根據現場觀測結果,來反演復合材料力學參數。反分析法主要依賴於材料程的實測位移、本構模型以及材料參數的假定。由於現場觀測資料的獲取受客觀條件影響和對復合材料認識上的不足,往往造成模型和材料參數假定與實際差異很大,因而該方法在實際應用中遇到了一些困難。為此,人們試圖選擇另一種途徑---直接分析法來預測復合材料的力學參數。由於離散元元方法沒有很好解決對復合材料離散後的計算結果的誤差,因此基於離散單元法計算宏觀力學參數的研究較少目前主要是基於有限元法的數值分析法,其計算過程是首先建立顆粒材料的統計模型,然後模擬出不同尺度的復合材料"試件";這樣得到的復合材料"試件",可以視為由基體和增強顆粒兩部分組成,其力學參數可以在實驗室分別確定,然後應用有限元方法進行分析,進而得到顆粒統計力學參數即。這一方法計算結果的正確性取決於顆粒統計模型的正確性以及有限元演算法的合理性,這一過程雖然有誤差,但是誤差不會比原位實測更大。該方法的不足之處在於為避免尺寸效應,模擬不同尺度"試件"時,增加了計算成木,並且當計算尺度增大時,"試件"內的顆粒數目明顯增加,給有限元的剖分和計算帶來了困難。
還有學者基於有限元方法,基於等效觀點,對顆粒增強復合材料的等效性能進行了研究,即根據一定的等效原則,宏觀地考慮顆粒對材料力學特性的影響,將整個顆粒增強復合材料均勻化、連續化,然後用有限元計算得到等效力學特性.按等效方式來分,主要有材料參數等效法、能量等效法等,這些等效方法有其適用的一面,但仍有一定局限性,例如等效體的尺寸效應問題等.關於材料參數的均勻化理論.作為一種研究復合材料宏觀性質的新方法,數學家們已進行了大量的研究,例如A.Bensousson,J.L.Lion、等針對小周期結構問題的漸進分析,給出了均勻化材料系數的概念;O.A.Oleinik等對具有小周期結構的均勻化理論和一階漸進分析理論進行了深入研究;T.Hou和陳志明等在此基礎上給出了一階漸進展開有限元的理論估計;崔俊芝等針對小周期結構提出了雙尺度禍合演算法。針對具有對稱性的基本胞體給出了高階漸進展式和有限元估計,並把此方法運用到工程計算中,從而使的均勻化從理論分析進入了數值計算。階段和實際應用階段,使得微觀構造十分復雜的非均質材料的宏觀力學參數計算成為現實,並且給出了計算周期性編制復合材料的等效力學參數的雙尺度方法。
在進行等效計算時,首先需建立材料的單胞模型,如二維單胞模型、二維多顆粒單胞模型、三維單胞模型、三維多顆粒單胞模型及代表體單元模型。武漢理工大學的瞿鵬程教授等,根據掃描電鏡試樣截面細觀圖,建立了有限元模型,並且成功預測出了SiC顆粒增強Al基復合材料等效彈塑性力學性能特徵曲線。Soppa根據體積含量10%Al2O3,增強6061Al基復合材料的實驗細觀圖,構件有限元分析模型,觀察殘余熱應力對PRMMCs變形和破壞的影響。Han等人採用三維多顆粒單胞模型研究PRMMCs的力學性能和裂紋的產生。
二、復合材料微結構拓撲優化研究
結構拓撲優化是結構形狀優化的發展,是布局優化的一個方面。當形狀優化逐漸成熟後,結構拓撲優化這一新的概念就開始發展,現在拓撲優化正成為國際結構優化領域一個最新的熱點。以Roderick Lakes(1987,1993)提出的具有負泊松比系數的泡沫材料以及對通過不同組分材料的復合可以獲得任何單相材料無法比擬的極端材料特性(如零膨脹系數、零剪切性能)新發現的闡述為標志,材料微結構的優化設計被納入拓撲優化領域。特別是由Sigmund於九十年代中期提出來的,現在己經成為材料研究領域的前沿課題之一。而在2002年的第9屆AIAA年會上Kalidindi等人提出了"微結構靈敏設計(MSD-Microstructure Sensitive Design)"概念,進一步完善與發展了微結構構型與組分優化設計的思想與體系。這些開創性的工作為復合材料與結構的拓撲優化設計奠定了堅實的基礎,進一步促進了材料微結構的優化設計。
復合材料的宏觀性能可由微結構單胞使用均勻化技術得到,通過對微結構單胞進行拓撲優化設計可獲得具有良好特性的復合材料,例如負的泊松比、負的熱膨脹系數、零剪切性能以及良好壓電特性的壓電材料。對單胞的拓撲優化設計,問題可分為兩類:一是滿足本構模量等於給定值的最小體積百分含量問題;二是滿足一系列體積約束和對稱條件的極值材料常數問題。Silva基於均勻化方法展開了具有極端性能的二維和三維壓電材料的優化設計;國內袁振、吳長春進行了極端性能的彈性材料優化設計,楊衛等採用優化准則法進行具有特定性能的微結構設計,實現了具有負泊松比的材料設計。基於傳熱性能的微結構優化設計目前還處於初期階段,張衛紅等基於均勻化方法進行材料的熱傳導性能預測,在給定材料用量下進行復合材料的設計,得到具有極端熱傳導性能的復合材料。
拓撲優化兼有尺寸優化和形狀優化的復雜性,微結構最終拓撲形式是未知的。以最小柔度作為目標函數的微結構拓撲優化而得到的蜂窩狀結構,為標準的規則正六邊行蜂窩結構。
三、小結
金屬基復合材料是近年來迅速發展起來的一種高技術新型工程材料,以其優越的性能受到國內外的高度重視。SiC顆粒增強鋁基復合材料是目前復合材料中最引人注目的體系之一,不論是在理論上還是在實驗上均是理想的復合材料研究對象。本文綜述了國內外對金屬基復合材料的有效性能研究和復合材料微結構拓撲優化,對金屬基復合材料研究具有一定的知道意義。

熱點內容
三個字的電影名 發布:2024-08-19 09:10:03 瀏覽:417
台灣紅羊經典電影 發布:2024-08-19 09:02:17 瀏覽:767
搞笑電影范冰冰梁家輝開戰 發布:2024-08-19 08:53:18 瀏覽:917
免費午夜激情 發布:2024-08-19 08:42:15 瀏覽:831
40分鍾左右的英語電影 發布:2024-08-19 08:28:43 瀏覽:695
電影宋基美娜 發布:2024-08-19 08:27:04 瀏覽:942
宿舍都變成女的的電影 發布:2024-08-19 07:59:35 瀏覽:897
台灣恐怖片喪屍 發布:2024-08-19 07:57:21 瀏覽:179
免費觀看qq群 發布:2024-08-19 07:53:00 瀏覽:921
4級片名字 發布:2024-08-19 07:39:14 瀏覽:553