海底的能源有哪些
1. 除了石油资源,海洋中还蕴藏着哪些丰富的能源
海洋中还蕴藏有巨大的热能,人们称之为“蓝色的煤海”,它也是人类未来可以充分专应用的能源之一属。未来的海洋热能转化厂,将设置在大海的深处。在沿海地区可以通过一种热能转化设备,把海洋的热能转化为电力,再由电缆输送到各个城市,作为城市用电。
还有一种被誉为“未来燃料”的“重水”,在海水中的含量也比陆地高得多。从重水中可以提取氢的同位素,科学家们正在用它来进行热核反应试验,如果获得成功,它将成为取之不尽的能源。
2. 海洋能源有什么 并分类
海洋能源分类
潮汐能
潮汐能就是潮汐运动时产生的能量,是人类利用最早的海洋动力资源。中国在唐朝沿海地区就出现了利用潮汐来推磨的小作坊。后来,到了11-12世纪,法、英等国也出现了潮汐磨坊。到了二十世纪,潮汐能的魅力达到了高峰,人们开始懂得利用海水上涨下落的潮差能来发电。据估计,全世界的海洋潮汐能约有二十亿多千瓦,每年可发电12400万亿度。
今天,世界上第一个也是最大的潮汐发电厂就处于法国的英吉利海峡的朗斯河河口,年供电量达5.44亿度。一些专家断言,未来无污染的廉价能源是永恒的潮汐。而另一些专家则着眼于普遍存在的,浮泛在全球潮汐之上的波浪。
波浪能
波浪能主要是由风的作用引起的海水沿水平方向周期性运动而产生的能量。
波浪能是巨大的,一个巨浪就可以把13吨重的岩石抛出20米高,一个波高5米,波长100米的海浪,在一米长的波峰片上就具有3120千瓦的能量,由此可以想象整个海洋的波浪所具有的能量该是多么惊人。据计算,全球海洋的波浪能达700亿千瓦,可供开发利用的为20-30亿千瓦。每年发电量可达9-万亿度。
海流
除了潮汐与波浪能,海流可以作出贡献,由于海流遍布大洋,纵横交错,川流不息,所以它们蕴藏的能量也是可观的。例如世界上最大的暖流——墨西哥洋流,在流经北欧时为1厘米长海岸线上提供的热量大约相当于燃烧600吨煤的热量。据估算世界上可利用的海流能约为0.5亿千瓦。而且利用海流发电并不复杂。因此要海流做出贡献还是有利可图的事业,当然也是冒险的事业。
海洋温差能
把温度的差异作为海洋能源的想法倒是很奇妙。这就是海洋温差能,又叫海洋热能。由于海水是一种热容量很大的物质,海洋的体积又如此之大,所以海水容纳的热量是巨大的。这些热能主要来自太阳辐射,另外还有地球内部向海水放出的热量;海水中放射性物质的放热;海流摩擦产生的热,以及其他天体的辐射能,但99.99%来自太阳辐射。因此,海水热能随着海域位置的不同而差别较大。海洋热能是电能的来源之一,可转换为电能的为20亿千瓦。但1881年法国科学家德尔松石首次大胆提出海水发电的设想竟被埋没了近半个世纪,直到1926年,他的学生克劳德才实现了老师的夙愿。
盐度差能
此外,在江河入海口,淡水与海水之间还存在着鲜为人知的盐度差能。全世界可利用的盐度差能约26亿千瓦,其能量甚至比温差能还要大。盐差能发电原理实际上是利用浓溶液扩散到稀溶液中释放出的能量。
3. 海底除了有石油,还有其他能源么
除了海底石油,海底还有煤田和原子能资源——铀和氘。目前世界上已发现的海底版煤田达100多个。主要分布在权澳大利亚、英国、希腊、冰岛、加拿大、土耳其、芬兰、法国、智利、日本等国近海水域,我国近海水域也有发现。最著名的海底采煤工程是在南美智利的麦哲伦海峡,它是地球最南端的煤矿,煤层厚度达30米,总储量达5000亿吨。日本煤的开采量有30%来自海底,主要集中在北海道和九洲。海底采煤的方法一般是开凿海底坑道,采用机械化设备将煤运到海面。这真像“黑龙出海”。
4. 海洋能源的种类主要分为几种
1.潮汐能
所谓潮汐能,就是因月球引力的变化引起潮汐现象,潮汐导致海水平面周期性地升降,因海水涨落及潮水流动所产生的能量。
潮汐能可以像水能和风能一样用来推动水磨、水车等,也可以用来发电。当前,潮汐能的主要功能就是发电。
利用潮汐能发电,首先要做的就是在海湾或河口建筑拦潮大坝。形成水库,在坝中修建机房,安装水轮发电机,利用水位差使海水带动水轮机发电。建成潮汐发电站后还有利于海产养殖业的发展。
世界上,潮汐能主要多分布在潮差较大的喇叭形海湾和河口地区,如加拿大的芬迪湾、巴西的亚马逊河口、南亚的恒河口和中国的钱塘江口等都蕴藏着大量的潮汐能。
我国海岸线的长度为1.8万公里,潮汐能资源十分丰富。在潮汐能资源的开发利用上,目前我国沿海地区已经修建了一些中小型潮汐发电站。在温岭江厦港,就有一座我国规模最大的潮汐发电站——江厦潮汐发电站,它还是世界第三、亚洲第一大潮汐发电站。潮汐发电站受潮水涨落的影响,具有很大的不稳定性,海水对水轮机及其金属构件的腐蚀及水库泥沙淤积问题都较严重。这些问题都是急需解决的,只有将这些做好,就能更好地利用潮汐能来发电。
2.波浪能
波浪能集有许多优点,比如能量密度高、分布面广泛。特别是在能源消耗多的冬季,可以利用的波浪能能量也最大。它的能量如此巨大,一直都吸引着沿海的能工巧匠们。他们想尽各种办法,期望能够驾驭海浪开辟新天地。
具体而言,波浪能就是指海洋表面波浪所具有的动能和势能。海洋表面的海水受太阳辐射给予的热量,可以说它是世界最大的太阳能收集器。温暖的地表海水,造成与深海海水之间的温差,由于风吹过海洋时产生风波,这种风波在辽阔的海洋表面上,风能以自然储存于水中的方式进行能量转移,因此,说波浪能是太阳能的另一种浓缩形态,并不是没有道理的。
在所有海洋能源中,波浪能是最不稳定的一种能源。波浪能是由风把能量传递给海洋而产生的,它事实上是吸收了风能而形成的,它的能量传递速率与风速有一定关系,也和风与水相互作用的距离(即风区)有关。水团相对于海平面发生位移时,使波浪具有势能,而水质点的运动,则使波浪具有动能,从而使波浪能发挥出作用。
在风较多的沿海地带,波浪能的密度通常都很高。例如,英国沿海、美国西部沿海和新西兰南部沿海等都是风区,有着十分有利的波候。而我国的浙江、福建、广东和台湾沿海的波能也较为丰富,在工业经济发展上功不可没。
波浪能之所以能够发电是通过波浪能装置,将波浪能首先转换为机械能,再最终转换成电能。这一技术源自于20世纪80年代初,西方海洋大国利用新技术优势纷纷展开实验,但受客观条件和技术影响,所取得的效果效益有好有差。
3.海流能
简而言之,海流所存储的动能就是海流能。海流能的能量与流速的平方和流量成正比。与波浪能相比,海流能的变化要平稳且有规律得多。海流能有着很大的开发价值。
海流能的利用方式主要是发电。1973年,美国研制出一种名为“科里奥利斯”的巨型海流发电装置。该装置为管道式水轮发电机。机组长l10米,管道口直径170米,安装在海面下30米处。在海流流速为2.3米/秒条件下,该装置获得8.3万千瓦的功率。此外,日本、加拿大也在大力研究试验海流发电技术。到目前为止,我国的海流发电研究也已经有样机进入中间试验阶段,发展前景不可限量。
相比陆地上的江河,利用海流发电要方便得多,它既不受洪水的威胁,又不受干旱的影响,几乎以常年不变的水量和一定的流速流动,为人类提供了可靠的能源。
利用海流发电,除了上面所说的类似江河电站管道导流的水轮机外,还有类似风车桨叶或风速计那样机械原理的装置。一种海流发电站,有许多转轮成串地安装在两个固定的浮体之间,在海流冲击下呈半环状张开,看上去很像花环,因此被称为花环式海流发电站,它是目前海流发电站的主要形式。
4.海洋温差能
海洋是一个巨大的吸热体,仔细观察不难发现,地球上的海洋除了南北的极地和部分浅海外,通常不会结冰,尤其是赤道附近的海域,海水表面温度几乎是恒温的,因此在描述海洋时人们都说它是温暖的。海洋深处的海水温度却很低,它一年四季温度只有摄氏几度,无论如何,太阳也没有办法把它晒热,这与海洋上层的温水比较,大约有20℃的温差。在热力学上,凡有温度差异都可用来作功,这就是我们所要讲的海洋温差能。
大多数情况下,海洋温差是指南纬25°至北纬32°之间海域中海水深层与表层的温度差。我国位于东半球,拥有较好的海洋温差条件,尤其是台湾附近海水温差更大,能够使人们得以很好地利用。
海洋温差能的主要功能就是利用温差发电。海洋温差发电主要采用两种循环系统,一种是开式,一种是闭式。在开式循环中,表层温海水在闪蒸蒸发器中,由于闪蒸而产生蒸汽,蒸汽进入汽轮机做功后流入凝汽器,由来自海洋深层的冷海水将其冷却。在闭式循环中,来自海洋表层的温海水先在热交换器内将热量传给丙烷、氨等低沸点工质,使之蒸发,产生的蒸汽推动汽轮机做功后再由冷海水冷却。在这个循环的过程中,可以不断地将海水的温差变成电力,由此使发电成为实现。
4.海洋盐差能
所谓盐差能,就是指海水与淡水之间或两种含盐浓度不同的海水之间的化学电位差能。这种能量主要存在于河流与海洋的交接处。同时,淡水丰富地区的盐湖和地下盐矿也可以利用盐差能。盐差能是海洋能源中密度最大的一种可再生能源。海洋盐差能可以用来发电在很久以前已被人们认识到。
其发电原理主要是:当把两种浓度不同的盐溶液盛在一个容器中时,浓溶液中的盐类离子就会自发地向稀溶中扩散,一直到两者浓度达到一致。所以,盐差能发电,就是利用两种含盐浓度不同的海水化学电位差能,并将其转换为有效电能。有学者在经过详细的计算后发现在17℃时,如果有1摩尔盐类从浓溶液中扩散到稀溶液中去,就会释放出5500焦的能量来。由此专家设想到:只要有大量浓度不同的溶液可供混合,就一定会有巨大的能量释放出来。经过进一步计算还发现,如果利用海洋盐分的浓度差来发电,它的能量可排在海洋波浪发电能量之后,但又要大于海洋中的潮汐能和海流能。
利用盐差能发电有多种方式,比如有渗透压式、蒸汽压式和机械一化学式等,其中渗透压式方案获得了人们最大的重视。将一层半渗透膜放在不同盐度的两种海水之间,通过这个膜会产生一个压力梯度,迫使水从盐度低的一侧渗透到盐度高的一侧,从而稀释高盐度的水,直到膜两侧水的盐度变成一致。此压力称为渗透压,它与海水的盐浓度及温度有着很大的关联。
据估算,地球上存在的可利用的盐差能达26亿千瓦,其能量甚至比温差能还要大。由此可见,海洋中蕴藏着巨大的能量,只要海水不枯竭,其能量就生生不息。作为新型的能源,海洋能源已吸引了全世界越来越多人的兴趣。
化学资源
海洋是化学资源的故乡。为什么这样说呢?因为海水是一种化学成分复杂的混合溶液,包括水、溶解干水中的多种化学元素和气体。
5. 海洋有哪些能源目前没有开发
1 在海底的深处由于压力很大
能够形成一种固体的一氧化碳
我国东南沿海 美国东海岸 澳大利亚的东南海岸的深处储量很大
但大规模开采的技术不成熟
现在无法大量开采
2 海洋能包括温度差能、波浪能、潮汐与潮流能、海流能、盐度差能、岸外风能、海洋生物能和海洋地热能等8种.这些能量是蕴藏于海上、海中、海底的可再生能源,属新能源范畴.所谓“可再生”是指它们可以不断得到补充,永不会枯竭,不像煤、石油等非再生能源,储量有限,开采一点就少一点.人们可以把这些海洋能以各种手段转换成电能、机械能或其他形式的能,供人类使用.海洋能绝大部分来源于太阳辐射能,较小部分来源于天体(主要是月球、太阳)与地球相对运动中的万有引力.蕴藏于海水中的海洋能是十分巨大的,其理论储量是目前全世界各国每年耗能量的几百倍甚至几千倍.
海洋能具有一些特点.第一,它在海洋总水体中的蕴藏量巨大,而单位体积、单位面积、单位长度所拥有的能量较小.这就是说,要想得到大能量,就得从大量的海水中获得.第二,它具有可再生性.海洋能来源于太阳辐射能与天体间的万有引力,只要太阳、月球等天体与地球共存,这种能源就会再生,就会取之不尽,用之不竭.第三,海洋能有较稳定与不稳定能源之分.较稳定的为温度差能、盐度差能和海流能.不稳定能源分为变化有规律与变化无规律两种.属于不稳定但变化有规律的有潮汐能与潮流能.人们根据潮汐潮流变化规律,编制出各地逐日逐时的潮汐与潮流预报,预测未来各个时间的潮汐大小与潮流强弱.潮汐电站与潮流电站可根据预报表安排发电运行.既不稳定又无规律的是波浪能.第四,海洋能属于清洁能源,也就是海洋能一旦开发后,其本身对环境污染影响很小.
6. 海洋有哪些能源可以利用
大海最诱人来的地方,主要在自于它蕴藏着极为丰富的自然能源和巨大的可再生能源。那波涛汹涌的海浪,一涨一落的潮汐,循环不息的海流,不同深度的海水温差,和海水交汇处的水的含盐浓淡差……都具有可以利用的巨大能量。
世界上最大的潮汐电站是法国的朗斯潮汐电站。英国在1991年建成一座海浪发电站。海流在流动中具有很大的冲击力和潜能,因而可以用来发电,据估计,世界海洋能的总功率达50亿千瓦左右,是海洋能中蕴藏量最大的一种能源。
7. 海里到底有什么能源呀/
很简单啊,石油、天然气、海底矿床、潮汐能、渔业和生物资源。
8. 海洋能源有哪些种类
1.潮汐能
所谓潮汐能,就是因月球引力的变化引起潮汐现象,潮汐导致海水平面周期性地升降,因海水涨落及潮水流动所产生的能量。
潮汐能可以像水能和风能一样用来推动水磨、水车等,也可以用来发电。当前,潮汐能的主要功能就是发电。
世界最大的潮汐能源系统
利用潮汐能发电,首先要做的就是在海湾或河口建筑拦潮大坝。形成水库,在坝中修建机房,安装水轮发电机,利用水位差使海水带动水轮机发电。建成潮汐发电站后还有利于海产养殖业的发展。
世界上,潮汐能主要多分布在潮差较大的喇叭形海湾和河口地区,如加拿大的芬迪湾、巴西的亚马逊河口、南亚的恒河口和中国的钱塘江口等都蕴藏着大量的潮汐能。
我国海岸线的长度为1.8万公里,潮汐能资源十分丰富。在潮汐能资源的开发利用上,目前我国沿海地区已经修建了一些中小型潮汐发电站。在温岭江厦港,就有一座我国规模最大的潮汐发电站——江厦潮汐发电站,它还是世界第三、亚洲第一大潮汐发电站。潮汐发电站受潮水涨落的影响,具有很大的不稳定性,海水对水轮机及其金属构件的腐蚀及水库泥沙淤积问题都较严重。这些问题都是急需解决的,只有将这些做好,就能更好地利用潮汐能来发电。
2.波浪能
波浪能集有许多优点,比如能量密度高、分布面广泛。特别是在能源消耗多的冬季,可以利用的波浪能能量也最大。它的能量如此巨大,一直都吸引着沿海的能工巧匠们。他们想尽各种办法,期望能够驾驭海浪开辟新天地。
波浪能发电
波浪能电站
具体而言,波浪能就是指海洋表面波浪所具有的动能和势能。海洋表面的海水受太阳辐射给予的热量,可以说它是世界最大的太阳能收集器。温暖的地表海水,造成与深海海水之间的温差,由于风吹过海洋时产生风波,这种风波在辽阔的海洋表面上,风能以自然储存于水中的方式进行能量转移,因此,说波浪能是太阳能的另一种浓缩形态,并不是没有道理的。
在所有海洋能源中,波浪能是最不稳定的一种能源。波浪能是由风把能量传递给海洋而产生的,它事实上是吸收了风能而形成的,它的能量传递速率与风速有一定关系,也和风与水相互作用的距离(即风区)有关。水团相对于海平面发生位移时,使波浪具有势能,而水质点的运动,则使波浪具有动能,从而使波浪能发挥出作用。
在风较多的沿海地带,波浪能的密度通常都很高。例如,英国沿海、美国西部沿海和新西兰南部沿海等都是风区,有着十分有利的波候。而我国的浙江、福建、广东和台湾沿海的波能也较为丰富,在工业经济发展上功不可没。
波浪能之所以能够发电是通过波浪能装置,将波浪能首先转换为机械能,再最终转换成电能。这一技术源自于20世纪80年代初,西方海洋大国利用新技术优势纷纷展开实验,但受客观条件和技术影响,所取得的效果效益有好有差。
3.海流能
简而言之,海流所存储的动能就是海流能。海流能的能量与流速的平方和流量成正比。与波浪能相比,海流能的变化要平稳且有规律得多。海流能有着很大的开发价值。
海流能的利用方式主要是发电。1973年,美国研制出一种名为“科里奥利斯”的巨型海流发电装置。该装置为管道式水轮发电机。机组长l10米,管道口直径170米,安装在海面下30米处。在海流流速为2.3米/秒条件下,该装置获得8.3万千瓦的功率。此外,日本、加拿大也在大力研究试验海流发电技术。到目前为止,我国的海流发电研究也已经有样机进入中间试验阶段,发展前景不可限量。
相比陆地上的江河,利用海流发电要方便得多,它既不受洪水的威胁,又不受干旱的影响,几乎以常年不变的水量和一定的流速流动,为人类提供了可靠的能源。
利用海流发电,除了上面所说的类似江河电站管道导流的水轮机外,还有类似风车桨叶或风速计那样机械原理的装置。一种海流发电站,有许多转轮成串地安装在两个固定的浮体之间,在海流冲击下呈半环状张开,看上去很像花环,因此被称为花环式海流发电站,它是目前海流发电站的主要形式。
4.海洋温差能
海洋是一个巨大的吸热体,仔细观察不难发现,地球上的海洋除了南北的极地和部分浅海外,通常不会结冰,尤其是赤道附近的海域,海水表面温度几乎是恒温的,因此在描述海洋时人们都说它是温暖的。海洋深处的海水温度却很低,它一年四季温度只有摄氏几度,无论如何,太阳也没有办法把它晒热,这与海洋上层的温水比较,大约有20℃的温差。在热力学上,凡有温度差异都可用来作功,这就是我们所要讲的海洋温差能。
大多数情况下,海洋温差是指南纬25°至北纬32°之间海域中海水深层与表层的温度差。我国位于东半球,拥有较好的海洋温差条件,尤其是台湾附近海水温差更大,能够使人们得以很好地利用。
海洋温差能的主要功能就是利用温差发电。海洋温差发电主要采用两种循环系统,一种是开式,一种是闭式。在开式循环中,表层温海水在闪蒸蒸发器中,由于闪蒸而产生蒸汽,蒸汽进入汽轮机做功后流入凝汽器,由来自海洋深层的冷海水将其冷却。在闭式循环中,来自海洋表层的温海水先在热交换器内将热量传给丙烷、氨等低沸点工质,使之蒸发,产生的蒸汽推动汽轮机做功后再由冷海水冷却。在这个循环的过程中,可以不断地将海水的温差变成电力,由此使发电成为实现。
4.海洋盐差能
所谓盐差能,就是指海水与淡水之间或两种含盐浓度不同的海水之间的化学电位差能。这种能量主要存在于河流与海洋的交接处。同时,淡水丰富地区的盐湖和地下盐矿也可以利用盐差能。盐差能是海洋能源中密度最大的一种可再生能源。海洋盐差能可以用来发电在很久以前已被人们认识到。
其发电原理主要是:当把两种浓度不同的盐溶液盛在一个容器中时,浓溶液中的盐类离子就会自发地向稀溶中扩散,一直到两者浓度达到一致。所以,盐差能发电,就是利用两种含盐浓度不同的海水化学电位差能,并将其转换为有效电能。有学者在经过详细的计算后发现在17℃时,如果有1摩尔盐类从浓溶液中扩散到稀溶液中去,就会释放出5500焦的能量来。由此专家设想到:只要有大量浓度不同的溶液可供混合,就一定会有巨大的能量释放出来。经过进一步计算还发现,如果利用海洋盐分的浓度差来发电,它的能量可排在海洋波浪发电能量之后,但又要大于海洋中的潮汐能和海流能。
利用盐差能发电有多种方式,比如有渗透压式、蒸汽压式和机械一化学式等,其中渗透压式方案获得了人们最大的重视。将一层半渗透膜放在不同盐度的两种海水之间,通过这个膜会产生一个压力梯度,迫使水从盐度低的一侧渗透到盐度高的一侧,从而稀释高盐度的水,直到膜两侧水的盐度变成一致。此压力称为渗透压,它与海水的盐浓度及温度有着很大的关联。
据估算,地球上存在的可利用的盐差能达26亿千瓦,其能量甚至比温差能还要大。由此可见,海洋中蕴藏着巨大的能量,只要海水不枯竭,其能量就生生不息。作为新型的能源,海洋能源已吸引了全世界越来越多人的兴趣。
9. 海底有哪些矿产资源
海底石油
埋藏在海底的石油和天然气,不论其生成环境是否属于海洋环境,都将列入海底石油资源。
近四十多年来海上石油勘探工作查明,海底蕴藏着丰富的石油和天然气资源。据1979年统计,世界近海海底已探明的石油可采储量为220亿吨,天然气储量为17万亿立方米,占当年世界石油和天然气探明总可采储量的24%和23%。
海底有石油,这在过去是不大好理解的。自从19世纪末海底发现石油以后,科学家研究了石油生成的理论。在中、新生代,海底板块和大陆板块相挤压,形成许多沉积盆地,在这些盆地形成几千米厚的沉积物。这些沉积物是海洋中的浮游生物的遗体(它们在特定的有利环境中大量繁殖),以及河流从陆地带来的有机质。这些沉积物被沉积的泥沙埋藏在海底,构造运动使盆地岩石变形,形成断块和背斜。伴随着构造运动而发生岩浆活动,产生大量热能,加速有机质转化为石油,并在圈闭中聚集和保存,成为现今的陆架油田。
我国沿海和各岛屿附近海域的海底,蕴藏有丰富的石油和天然气资源。外国有人估计中国近海石油储量约100~250万吨,无疑我国是世界海洋油气资源丰富的国家之一。
渤海是我国第一个开发的海底油田。渤海大陆架是华北沉降堆积的中心,大部分发现的新生代沉积物厚达4000米,最厚达7000米。这是很厚的海陆交互层,周围陆上的大量有机质和泥沙沉积其中,渤海的沉积又是在新生代第三纪适于海洋生物繁殖的高温气候下进行的,这对油气的生成极为有利。由于断陷伴随褶皱,产生一系列的背斜带和构造带,形成各种类型的油气藏。东海大陆架宽广,沉积厚度大于200米。外国人认为:东海是世界石油远景最好的地区之一;东海天然气储量潜力可能比石油还要大。
南海大陆架,是一个很大的沉积盆地,新生代地层约2000~3000米,有的达6000~7000米,具有良好的生油和储油岩系。生油岩层厚达1000~4000米,已探明的石油储量为6.4亿吨,天然气储量9800亿立方米,是世界海底石油的富集区。因此,某些国外石油专家认为,南海可能成为另一个波斯湾或北海油田。
海上石油资源开发利用,有着广阔的前景。但是,由于在海上寻找和开采石油的条件与在陆地上不同,技术手段要比陆地上的复杂一些,建设投资比陆地上的高,风险要比陆地上的大,因此,当今世界海洋石油开发活动,绝大多数国家采取了国际合作的方式。
我国为了加快海上石油资源开发,明确规定我国拥有石油资源的所有权和管辖权;合作区的海域和资源、产品属我国所有;合作区的海域和面积大小以及选择合作对象,都由我国决定等一系列维护我国主权和利益的条款。合理利用外资和技术,已成为加速海上石油资源开发的重要途径。
众所周知,随着世界上工业和经济的高速发展,矿产资源消耗量急剧增加,陆地矿产资源在全球范围内日趋短缺、衰竭。人们唯有把占地球表面积71%以上的海洋,作为未来的矿产来源。
海底矿产
海底除了我们前面提到的石油、天然气外,还蕴藏着丰富的金属和非金属矿。至今已发现海底蕴藏的多金属结核矿、磷矿、贵金属和稀有元素砂矿、硫化矿等矿产资源达6000亿吨。若把太平洋底蕴藏的一百六十多亿吨多金属结核矿开采出来,其镍可供全世界使用两万年;钴使用34万年;锰使用18万年;铜使用1000年。更为有趣的是,人们发现海底锰结核矿石(含锰、铁、铜、钴、镍、钛、钒、锆、钼等多种金属)还在不断生长,它决不会因为人类的开采而在将来消失。据美国科学家梅鲁估计:太平洋底的锰结核,以每年1000万吨左右的速度不断生长。假如我们每年仅从太平洋底新生长出来的锰结核中提取金属的话,其中铜可供全世界用三年;钴可用四年;镍可以用一年。锰结核这一大洋深处的“宝石”,是世界上一种取之不尽、用之不竭的宝贵资源,是人类共同的财富。
然而要从四、五千米深的大洋底部采取锰结核,也是一件很不容易的事,一定要有先进的技术才行。目前只有少数几个发达国家能够办到。我国也已基本上具备了开发大洋锰结核的条件,到21世纪,可望实现生产性开采。
海洋为人类的生存提供了极为丰富的宝贵资源,只要我们能合理的开发、利用,它将循环不息地为人类所用,取之不尽,用之不竭,是下个世纪人类的重要资源供应地。面积广、幅度大和油源近等特点,开发东海盆地油气资源的前景广阔。近几年的海上石油开采也近一步得到了证实。在南海四周广阔的大陆架上,分布着珠江口盆地、莺歌海盆地、北部湾盆地、湄公盆地、文莱~沙巴盆地和巴拉望盆地等。据估计,在南海海区有半数以上的盆地的油气储量达100~300亿吨,构成了环太平洋区大含油气带西带的主体部分。经专家计算,整个南中国海我国传统海疆线以内的油气资源约合15000亿美元,开采前景甚致要超过英国的北海油田。
我国海滨砂矿资源主要有钛铁矿、锆英石、独居石、金红石、磷钇矿、铌袒铁矿、玻璃砂矿等共十几种,此外还发现了金钢石和砷铂矿颗粒。海滨砂矿主要可分为8个成矿带,如海南岛东部海滨带、粤西南海滨带、雷州半岛东部海滨带、粤闽海滨带、山东半岛海滨带、辽东半岛海滨带、广西海滨带和台湾北部及西部海滨带等。特别是广东海滨砂矿资源非常丰富,其储量在全国居首位。
1873年,英国海洋学家在北大西洋采集洋底沉积物时发现一种类似卵石般的团块,经过化验,他们发现这种团块几乎全由纯净的氧化锰和氧化铁组成。此后,他们相继在太平洋、印度洋的各深海区都获取了这样的团块。这就是锰结核。锰结核是一种深海海底自生的锰矿产。主要成分为锰和铁的氧化物和氢氧化物,含铜、镍、钴等多种金属元素,广泛分布于太平洋、大西洋和印度洋水深4至6千米的海底,一般呈球状或椭圆球状或块状,直径1至20厘米。世界洋底的锰结核总量约3万多亿吨,其中太平洋底最多,约1.7万亿吨,含锰4000亿吨、镍164亿吨、铜88亿吨、钴58亿吨。这些储量相当于目前陆地锰储量的400多倍,镍储量的1000多倍,铜储量的88倍,钴储量的5000多倍。按现在世界年消耗量计,这些矿产够人类消费数千甚至数万年。更重要的是这种卵状矿物还在不断生长。太平洋底的锰结核以每年1000万吨左右的速度生长,一年的产量就可供全世界用上几年。上个世纪70年代,国际上出现锰结核开发热。随着勘探技术和开发技术的发展,对锰结核的开采将形成新兴的海洋矿产业。1978年,美国根据多年的考察、探测结果,综合了大量的研究资料,正式出版了《海底沉积物和锰结核公布图》,使世界各国对各大洋特别是太平洋海域的锰结核情况有了一个较全面、正确的了解。我国自上个世纪70年代也开展了大洋海底资源勘查活动,并制定了大洋锰结核资源调查开发研究计划,在太平洋CC区选出可供采矿作业的结核矿区30万平方公里。1991年联合国国际海底管理局和国际海洋法法庭批准中国获得15万平方公里的国际海底矿区优先开采权。
海底热液矿床是与海底热泉有关的一种多金属硫化物矿床。系海水侵入水深2000至3000米海底裂缝中,被地壳深处热源加热后,溶解了地壳内的多种金属化合物,再从洋底喷出,遇冷海水而凝结生成的沉淀物。又称“多金属软泥”或“热液性金属泥”。含有铜、铅、锌、锰、铁、金、银等多种金属。其中金、银等贵金属的含量高于锰结核矿,被称为“海底金库”。分布水深一般为800至2400米。海底热液矿床的发现,引起世界各国的高度重视。专家们普遍认为,海底热液矿是极有开发价值的海底矿床。一些深海探查开采技术发达的国家纷纷投入巨资研制各种实用型采矿设备。我国也将海洋技术列为未来重点发展的高新技术之一。
可燃冰
正在燃烧的可燃冰
可燃冰的学名为“天然气水合物”,是天然气在0℃和30个大气压的作用下结晶而成的“冰块”。“冰块”里甲烷占80%99.9%,可直接点燃,燃烧后几乎不产生任何残渣,污染比煤、石油、天然气都要小得多。西方学者称其为“21世纪能源”或“未来能源”。
立方米可燃冰可转化为164立方米的天然气和0.8立方米的水。科学家估计,海底可燃冰分布的范围约4000万平方公里,占海洋总面积的10%,海底可燃冰的储量够人类使用1000年。
随着研究和勘测调查的深入,世界海洋中发现的可燃冰逐渐增加,1993年海底发现57处,2001年增加到88处。据探查估算,美国东南海岸外的布莱克海岭,可燃冰资源量多达180亿吨,可满足美国105年的天然气消耗;日本海及其周围可燃冰资源可供日本使用100年以上。
据专家估计,全世界石油总储量在2700亿吨到6500亿吨之间。按照目前的消耗速度,再有50-60年,全世界的石油资源将消耗殆尽。可燃冰的发现,让陷入能源危机的人类看到新希望。
10. 海洋中的清洁能源有哪些急!!
1 在海底的深处由于压力很大
能够形成一种固体的一氧化碳
我国东南沿海 美国东海岸 澳大利亚的东南海岸的深处储量很大
但大规模开采的技术不成熟
现在无法大量开采
2 海洋能包括温度差能、波浪能、潮汐与潮流能、海流能、盐度差能、岸外风能、海洋生物能和海洋地热能等8种。这些能量是蕴藏于海上、海中、海底的可再生能源,属新能源范畴。所谓“可再生”是指它们可以不断得到补充,永不会枯竭,不像煤、石油等非再生能源,储量有限,开采一点就少一点。人们可以把这些海洋能以各种手段转换成电能、机械能或其他形式的能,供人类使用。海洋能绝大部分来源于太阳辐射能,较小部分来源于天体(主要是月球、太阳)与地球相对运动中的万有引力。蕴藏于海水中的海洋能是十分巨大的,其理论储量是目前全世界各国每年耗能量的几百倍甚至几千倍。
海洋能具有一些特点。第一,它在海洋总水体中的蕴藏量巨大,而单位体积、单位面积、单位长度所拥有的能量较小。这就是说,要想得到大能量,就得从大量的海水中获得。第二,它具有可再生性。海洋能来源于太阳辐射能与天体间的万有引力,只要太阳、月球等天体与地球共存,这种能源就会再生,就会取之不尽,用之不竭。第三,海洋能有较稳定与不稳定能源之分。较稳定的为温度差能、盐度差能和海流能。不稳定能源分为变化有规律与变化无规律两种。属于不稳定但变化有规律的有潮汐能与潮流能。人们根据潮汐潮流变化规律,编制出各地逐日逐时的潮汐与潮流预报,预测未来各个时间的潮汐大小与潮流强弱。潮汐电站与潮流电站可根据预报表安排发电运行。既不稳定又无规律的是波浪能。第四,海洋能属于清洁能源,也就是海洋能一旦开发后,其本身对环境污染影响很小。