金属凝固技术有哪些
A. 常用的金属材料成型工艺有哪些
1、压铸(注意压铸不是压力铸造的简称)
是一种金属铸造工艺,其特点是利用模具腔对融化的金属施加高压。模具通常是用强度更高的合金加工而成的,这个过程有些类似注塑成型。
2、砂模铸造
就是用砂子制造铸模。 砂模铸造需要在砂子中放入成品零件模型或木制模型(模样),然后在模样周末填满砂子,开箱取出模样以后砂子形成铸模。
为了在浇铸金属之前取出模型,铸模应做成两个或更多个部分;在铸模制作过程中,必须留出向铸模内浇铸金属的孔和排气孔,合成浇注系统。 铸模浇注金属液体以后保持适当时间,一直到金属凝固。 取出零件后,铸模被毁,因此必须为每个铸造件制作新铸模。
3、熔模铸造
又称失蜡铸造,包括压蜡、修蜡、组树、沾浆、熔蜡、浇铸金属液及后处理等工序。失蜡铸造是用蜡制作所要铸成零件的蜡模,然后蜡模上涂以泥浆,这就是泥模。泥模晾干后,在焙烧成陶模。一经焙烧,蜡模全部熔化流失,只剩陶模。一般制泥模时就留下了浇注口,再从浇注口灌入金属熔液,冷却后,所需的零件就制成了。
4、模锻
是在专用模锻设备上利用模具使毛坯成型而获得锻件的锻造方法。根据设备不同,模锻分为锤上模锻,曲柄压力机模锻,平锻机模锻,摩擦压力机模锻等。辊锻是材料在一对反向旋转模具的作用下产生塑性变形得到所需锻件或锻坯的塑性成形工艺。它是成形轧制(纵轧)的一种特殊形式。
5、轧制
又称压延,指的是将金属锭通过一对滚轮来为之赋形的过程。如果压延时,金属的温度超过其再结晶温度,那么这个过程被称为“热轧”,否则称为“冷轧”。压延是金属加工中最常用的手段。
B. 金属材料凝固形核方法
金属材料凝抄固形核方法有袭两种:
1、均匀形核:也称为均质形核、自发形核。是由金属材料本身的原子达到临界晶核的形核方式。
2、1、非均匀形核:也称为异质形核、非自发形核。是由依附于外来的固态颗粒生长的形核方式。
C. 定向凝固的新型的定向凝固技术
电磁约束成形定向凝固技术是西北工业大学傅恒志等人将电磁约束成形技术和版高梯度定向权技术相结合而提出的新型材料制备技术。该技术利用电磁感应加热熔化感应器内的金属材料,并利用在金属熔体表层部分产生的电磁压力来约束已熔化的金属熔体成形。[10]同时,冷却介质与铸件表面直接接触,增强了铸件固相的冷却能力,在固-液界面附近熔体内产生很高的温度梯度,使凝固组织超细化,可显著提高逐渐的表面质量和内在综合性能。
电磁约束成形定向凝固技术为先进材料成形加工技术的发展开辟了一个新的领域,对高熔点、易氧化及高活性特种合金的成形制备具有特别重要的意义。此技术目前还处于研究阶段。 杨森等人认为激光能量高度集中的特性,使它具备了在作为定向凝固热源时可能获得比现有定向凝固方法高得多的温度梯度的可能性。激光超高温度梯度快速定向凝固能够获得比常规定向凝固包括ZMLMC技术高得多的温度梯度和凝固速率。利用激光表面熔凝技术实现超高温度梯度快速定向凝固的关键在于:在激光熔池内获得与激光扫描速度方向一致的温度梯度。根据合金凝固特性选择适当的激光工艺参数,以获得包晶组织。目前激光超高温度梯度快速定向凝固还处于探索性实验阶段。
D. 快速凝固技术都有哪些方法(越多越好)
(1)气枪法 这种方法的基本原理是将熔解的合金液滴,在高压( >50 atm)惰性气体流(如Ar 或He)的突发冲击作用下,射向用高导热率材料(经常为纯铜)制成的急冷衬底上,由于极薄的液态合金与衬底紧密相贴,因而获得极高的冷却速度( >109℃/S) 。这样得到的是一块多孔的合金薄膜,其最薄的厚度小于0.5~1.0 μm (冷速达109℃/S)。
(2)旋铸法(chill block melt-spinning)。旋铸法是将熔融的合金液自钳锅底孔射向一高速旋转的、以高导热系数材料制成的辊子表面。由于辊面运动的线速度很高( >30~50 m/s),故液态合金在辊面上凝固为一条很薄的条带(厚度不到15-20μm左右)。合金条带在凝固时是与辊面紧密相贴的,因而可达到(106~107 ℃/S)的冷却速度。显然,辊面运动的线速度越高,合金液的流量越大,则所获得的合金条带就越薄,冷却速度也就越高。用这种方法可获得连续、致密的合金条带。不但可以方便地用于各种物理、化学性能的测试,而且可以作为生产快速凝固合金的工艺方法来使用,目前己成为制取非晶合金条带较为普遍采用的一种方法。
(3)工作表面熔化与自淬火法(surface melting and self-quenching)。用激光束或电子束扫描工件表面,使表面极薄层的金属迅速熔化,热量由下层基底金属迅速吸收,使表面层(<10 μm)在很高的冷却速度(>108℃/S)下重新凝固。这种方法可在大尺寸工件表面获得快速凝固层,是一种具有工业应用前景的技术。
(4)雾化法(atomization) 。普通雾化法其冷却速度不超过102~103 ℃/S。为加快冷却速度,采取冷却介质的强制对流,使合金液在N2、Ar、He等气体的喷吹下,雾化凝固为细粒,或使雾化后的合金在高速水流中凝固。另一种雾化法是将熔融的合金射向一高速旋转(表面线速度可达100m/s)的铜制急冷盘上,在离心力作用下,合金雾化凝固成细粒向周围散开,通过装在盘四周的气体喷嘴喷吹惰性气体的加速冷却。用雾化法制得的合金颗粒尺寸一般为10-100μm。在理想的条件下,可达到106 ℃/S的冷却速度。这些合金粉末通过动态紧实,等热静压或热挤等工艺,制成块料及成型零件。
E. 马幼平的《金属凝固原理及技术》
出版社: 冶金工业出版社; 第1版 (2008年5月1日)
平装: 361页
正文语种: 简体中文
开本: 32
ISBN: 7502444963, 9787502444969
条形码: 9787502444969
产品尺寸及重量: 20 x 13.8 x 1.6 cm ; 399 g
ASIN: B001BF353C
目录
0 概论
0.1 金属材料地位
0.2 金属凝固学的发展概论
0.3 金属凝固过程的研究对象
0.4 凝固过程基本问题
0.5 凝固过程研究方法
0.6 凝固学科的战略地位
0.7 凝固学科发展的现状与趋势
0.8 凝固学科发展战略目标
第一篇 凝固原理
1 液态金属的结构和性质
1.1 固体金属的加热、熔化
1.2 液态金属的结构
1.2.1 液态金属的热物理性质
1.2.2 X射线结构分析
1.2.3 液态金属的结构
1.2.4 液态金属理论结构模型——刚球模型与PY理论
1.3 液态金属的性质
1.3.1 液态金属的黏滞性(黏度)
1.3.2 表面张力
2 液态金属凝固热力学及动力学
2.1 纯金属的凝固
2.2 二元合金的凝固平衡
2.3 压力及界面曲率对凝固点的影响
2.4 形核过程
2.5 形核率
2.6 固-液界面的结构
2.7 晶体生长
3 凝固过程中的溶质再分配
3.1 溶质再分配与平衡分配系数
3.2 非平衡凝固时的溶质再分配
3.2.1 液相均匀混合时的溶质再分配
3.2.2 液相中只考虑扩散时的溶质再分配
3.3.3 液相部分混合时的溶质再分配
4 单相合金凝固
4.1.单相合金平衡凝固
4.2.稳态凝固
4.3.液态合金凝固过程中的“成立过冷”
4.3.1 “成分过冷”产生的条件
4.3.2“成分过冷”的过冷度
4.4. “成分过冷”对单相合金凝固过程的影响
4.4.1 无“成分过分”的平面生长
4.4.2 窄成分过冷区的胞状生长
4.4.3 较宽成分过冷的柱状树枝晶生长
4.4.4 宽成分过冷的自由树枝晶生长
4.4.5 树枝晶的生长方向和枝晶间距
4.4.6 晶体形貌间的关系
5 多相合金凝固
5.1 共晶合金的凝固
第二篇 凝固控制技术
6 金属熔体控制
7 铸件凝固组织控制
8 凝固新技术
9 连续铸造技术
F. 金属凝固的条件对组织有什么影响
快速凝固指的是在抄比常规工艺过程中快得多的冷却速度下,金属或合金以极快的速度从液态转变为固态的过程。要求金属与合金凝固时具有极大的过冷度。快速凝固的特点 : a. 凝固速度快,从而可以使金属在液态中的溶解度得到扩大,这样是其材料的密度有所改变,材料各部位的组织更加的紧密,改变金属中各元素的所含比例,从而可以改变该材料的性质,使其达到某种用途的需求。 b. 由于凝固的速度比一般铸造的快,这样得到的凝固结晶会更加的细小,晶粒的分布更加的均匀,一定程度减少了杂质的混入,提高材料的质量,由于晶粒组织的优化,该材料的力学,化学性质会得到提高,从而使其得到更广的运用。 c. 由于快速凝固给材料带来的溶解度的扩大,更加精细的晶粒的析出,从而赋予了材料的高强度,高韧度,以及高耐腐蚀性。这是快速凝固技术能在工业领域得到广泛运用的硬道理。 d. 除了金属的快速凝固,还有一种快速凝固非晶态合金。其特点和上类似,可以使材料具有极高的强度,硬度。又因为其实处于非晶态,它在具有高强度的同时也具有较好的韧性。同时,因为非晶态这种特殊形态,可以使材料具有良好的半导体性能,这是传统铸造方法所不能达到的。
G. 阐述铸造金属凝固的形式:同时凝固、顺序凝固、糊状凝固的特征及适合金属种类特征和工艺
顺序凝固:铸件的顺序凝固原则是采取各种措施,保证铸件各部分按照距离冒口的远近由远及近朝着冒口方向凝固,冒口本身最后凝固。铸件按照这一原则凝固时,可使缩孔集中在冒口中,获得致密的铸件。
带有冒口的板状铸件,采用顶注式浇注。由于金属液是从冒口浇入的,所以铸件纵断面中心线上的温度自远离冒口处向冒口方向依次递增。
在向着冒口张开的ϕ 角范围内,金属都处于液态,形成“楔形”补缩通道,ϕ 角越大,越有利于冒口的补缩如图所示。同时凝固条件下,扩张角ϕ 等于零,没有补缩通道,无法实现补缩。但是由于同时拉伸的应力及阶段。
1、弹性:εe=σe/E,指标σe,E。
2、刚性:△L=P·l/E·F抵抗弹性变形的能力强度。
3、强度:σs---屈服强度,σb---抗拉强度。
4、韧性:冲击吸收功A。
5、疲劳强度:交变负荷σ-1<σs。
6、硬度HR、HV、HB。
(7)金属凝固技术有哪些扩展阅读:
凝固过程中液态金属的流动、单向凝固技术、快速凝固。与第一版相比,修订后的新书增加了数值模拟最新内容,以及液态金属结构、固-液界面非线性动力理论、快速凝固热力学和动力学等内容,反映了凝固理论和技术的发展。
富有展性、延性及导热性、导电性的这一类物质。金属中延展性最好的是Au,导电好的依次是Ag、Cu、Al;金属可分为有色金属-黑色金属、重金属-轻金属等;一种音乐风格,通常被成为重金属
H. 控制金属凝固组织的方法有哪些,各有什么特点
定向凝固的金属材料的晶粒具有明显的方向性,以长轴粗大晶粒为主(晶粒的长度方向为凝固方向),材料的总体力学性能表现为各向异性。
I. 金属成型加工方法有哪些
1、铸造:将抄熔融态金属浇入铸型后,冷却凝固成为具有一定形状铸件的工艺方法。
2、塑性成型:塑性成型加工指在外力的作用下,金属材料通过塑性变形,获得具有一定形状、尺寸和力学性能的零件或毛坯的加工方法。塑性加工可分为锻造、扎制、挤压、拔制、冲压五种。
3、切削加工:利用切削刀具在切削机床上(或用手工)将金属工件的多余加工量切去,以达到规定的形状、尺寸和表面质量的工艺过程。
4、焊接加工:是充分利用金属材料在高温作用下易熔化的特性,使金属与金属发生相互连接的一种工艺,是金属加工的一种辅助手段。
5、粉末冶金:是以金属或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结,制造金属材料、复合材料以及各种类型制品的工艺技术。
J. 简述金属线材的快速凝固技术
金属线材均为经过塑性变形(轧制、拉拔等)而成。不是快速熔凝而成。