当前位置:首页 » 有色金属 » 什么是液态金属单质

什么是液态金属单质

发布时间: 2021-03-09 07:50:56

㈠ iPhone 使用的「液态金属」指的是什么

受启发于 @张茂 和 @张一刘 ,因为他们两个的答案最初看到觉得完全矛盾,后来仔细查询了,才发现他们两个人都是说的对的,只是受限于环境,都没有说全面而已。看得出来,张茂同学确实是研究液态金属的,但是由于没有接触到 iPhone 的生产过程,所以不明白 iPhone 的液态金属用在了何处,而张一刘先生则是接触了 iPhone 的外壳生产,所以能够具体到 Al 所用型号(感谢张先生透露的这一点点信息,足够我完成查证了),但是因为 iPhone 生产部件的代工厂分布过散,张先生一样没有知道液态金属的应用部件。
Amorphous Alloy 就是 iPhone 所用材料的统称,其中 Amorphous 是指的非晶态的,Alloy 则是指的合金。而这一材料由于生产困难,工艺要求高,并没有能够用于 iPhone 的外壳,而是用在了 iPhone 的 SIM 卡托取卡针部分。这一部分,是由美国 LiquidMetal 公司生产(液态金属名称的由来),所以可能张先生没有接触到。

(取卡针)
这就是非晶态金属的真身了,在没有接触过之前,很多人会误以为液态金属长成这样:

或者,这样:

哦,不对,应该是这样:

甚至有人在看到苹果采用液态金属的新闻后说了这么一句话:

这个……脑洞太大完全堵不住……
所以我来结束这一切。
正文
要说液态金属,我们首先得从普通金属说起:
作为一个读过初中的好孩子,我们知道,金属由金属键链接,被老师们描述为:
Positive ions surrounded in a sea of electrons.
即金属阳离子沉浸在自由电子的海洋中。
金属键会影响金属以下几个特性:
Hardness
Melting point
Strong
Tough
Malteable
Electrically conctive
Thermally conctive
其中,对于日常使用,我们主要关心:
Hardness
Strong
Tough
Malteable
其余的,除非特殊用途,一般生活中不会存在太多的影响。
Hardness
即硬度,被描述为材料抵抗永久性损坏(刺穿、缺损)的能力。说白了,就是你手机哐当一下掉地上,拿起来的时候,外壳上有没有划痕。
这中间,损坏这个种类,初中老师也说了(初中老师好伟大……),分为 Elastic Deformation(弹性形变) 和 Plastic Deformation(塑性形变)。
那么思考一下,同样是受力为什么会出现这两种区别?
初中老师这个时候不管用了,因为初中知识只能告诉你,受力超过了材料的弹性限度,物体就发生塑性形变了,那么,为什么?
万能的大学老师出现了,大学老师说,因为原子出轨了。

(原谅我找不到原子……)
本来,大家应该是端端正正做好,比如如下面这样:

嗯,很规矩,但是受到外力作用,出现了上面几个“王.八.蛋”,于是大家就走散了……
认真点说,这叫原子发生永久性位移,那么位移发生之后,为什么材料会改变性质和形状呢?
下面,要引入一个概念:
Crystallinity
抱歉我也拿不准这个的中文叫什么,叫结晶性( 谢谢@张小鱼怒 )……
这个 Cristallinity 是什么,其实就是元素中,原子排列的形式,我们可以想象,金属内部如果放大,不会是乱成一锅粥的,这是它的天然属性,即有 Distinct crystal lattice structure。但是,并非所有的物体,都有这个 Distinct crystal lattice structure,比如玻璃、陶瓷等等 Ceramics(无机非金属)材料或者 Polymers(有机高分子)材料。
所以,往下又会分出三种类型的材料:
Crystalline 晶体
Semi-crystalline 半结晶体
Amorphous 非晶体
这个时候,看到 Amorphous,应该知道我们的液态金属 Amorphous Alloy 属于哪一类了吧?
回到之前的 Cristallinity,为什么要提及这个 Cristallinity,因为它决定了原子排列的有序程度,而根据生活常识,我们知道,一间房间越有序,是不是要想让它变得混乱越容易?
这就是原因,物质总是倾向于从有序变为无序,从高能变为低能。
为了更好的理解,以作为 Crystalline 的金属,又可以在 Atomic Crystalline Formation(原子晶体结构)上,分为下面三种( @左昊诚 谢谢你提供的翻译,但是感觉直译的名字不如缩写好记):
Body-Centered Cubic (BCC)
Face-Centered Cubic (FCC)
Hexagonal Close Pack (HCP)
很烦有木有,好吧我也很烦,尤其最后一个的读音……
首先根据图片在脑袋中想象一下,不要单纯的只看一张图,要尝试想象大量同样的结构拼接之后会怎么样,然后我分别解释一下:

Body-Centered Cubic (BCC)
因为是以一个原子为中心的正方体,所以很多的类似结构组合之后,会出现大量原子 Overlap(应该翻译为重叠),因为每一个原子,都可以作为周围 8 个原子的中心。所以!每一个原子的各个方向的受力都是均匀的,因此需要更大的力使其发生 Plastic Deformation(塑性形变),因此,Hardness 很高(但是不比 Ceramic 高,原因等会说)。同样的,它的 Strong 和 Tough 都很强,但是,这就导致了这一结构的金属 Ductility(延展性)并不是很强,三种结构中,属于中间水平。
主要为这一结构的材料,是 Steel(钢)(含铁),为什么我要用英文,因为之后会有钢的表示法。
Face-Centered Cubic (FCC)
可以想象的出,因为不存在 BCC 中的重叠结构,那么内部受力就是不均匀的。内部出现矛盾,表现出来就是容易瓦解。也导致它存在大量的 Slip Planes(在知乎上提过问,翻译过来应该是滑移面),这个 Slip Planes 等下说。因此,它的硬度比 BCC 要低,Strong 和 Tough 也都要低些,但是反过来,它的 Ductility 很好,适于成型和加工。
主要为这一结构的材料,是 Aluminum(铝,简称 AL)
记住这两个主要材料的分类,就可以记住这两个结构 BCC 和 FCC 的大概性质。
Hexagonal Close Pack (HCP)
这个很特殊,中间层和上下层不链接,上下为 FCC,中间为 BCC,所以它有 BCC 的硬度,Strong 和 Tough。你以为它结合了 BCC 和 FCC 的全部优点吗?你真是想太多啊……如果真的有,那我们就可以一起造钢铁侠了……它的缺点,就是比 BCC 还低的 Ductility,以至于可以用 Brittle(质脆)形容性质。
* 刚刚提到了一个 Slip Planes,这个东西是这么被定义的:
Slip planes are essentially paths of least resistance through which atoms are able to move, to compensate for applied loads and forces.
说白了就是一个滑不溜鳅的面,然后王.八.蛋们,哦,不对,原子们受力后可以在上面从这里跑到那里。
这个面存在的越多,原子就越容易移动,原子越容易移动,材料就越软。
然后呢,我们开始讨论一下比原子更宏观一点的一种结构:
Grains(精子,不对,万恶的输入法,晶粒)
The basic crystalline unit, or unit cell, is repeated, as illustrated
这个东西,就是晶粒:

这些晶粒的形成,是这样来的,如同搅基一样,一开始是两个原子觉得合适,然后他们在一起了,这是正常的,之后遇到了第三个,觉得不错,三个人就在一起了,这就是 3P,然后又走啊走,见到第四个人,顺理成章的,4P 了,随着人数的增加,慢慢的就是 5P,6P,7P……一直到 100P,1000P 都可以继续下去,大家一起搞来搞去就把事情搞大了。
但是,随着人数的增加,每个人喜欢的姿势和角度都不一样(Alignments or Orientations),有的喜欢上下,有的喜欢前后,有的喜欢 69,搞来搞去各种姿势扭曲在一起,就形成了 A Polycrystalline Solid。但是,由于大家都是同一种东西,除了某些人外,这个主要的结合部位(化学键)和方向(键角)基本还是一致的,这就保证了晶体结构基本还是在三个里面不停的转。
于是搞出了下图这种东西:

这就是乱伦的社会……然后不同的大大小小(Size)乱伦社会因为外力和内力的原因在 Grain Boundaries(晶界)碰到了一起,就有一次的一起乱伦……于是形成了上图所示的东西。
因为毕竟大家口味不同,所以还是会有小小的不合适,所以存在这种 Dislocations(错位):

当然这些不重要,我只是一说而已。
休息一下
上文我们讲述了这么几点:
三种不同的晶体结构有各种不同的性质;
金属内部的结构可以重组(一起散场,然后再换不同的伴侣);
同一种金属,也有不同的晶体结构、晶粒大小和错位。
接下来,讨论一点合金和无机非金属:
合金分为:
Ferrous Alloys(含铁合金)
Non-ferrous Alloys(不含铁咯)
其中,Ferrous Alloys 在 iPhone 中的应用,是 Steel(钢);而 Non-ferrous Alloys 在 iPhone 中的应用,是 Aluminum(铝)。
钢,又分为 Low / Med / High Carbon Steels:
Low-Carbon Steel
含 Carbon(碳)量少于 0.20%
Med-Carbon Steel
含 Carbon 介于 0.20%~0.50%
High-Carbon Steel
含 Carbon 介于 0.50%~1.0%
Ultra-High Carbon Steel (Cast Steels)
含 Carbon 介于 1.0%~2.0%
Cast Iron (铸铁)
含 Carbon 超过 2.0%
这里,我们知道,Carbon,即碳,可以和铁 Fe 在加热时,变成 Fe3C,这个东西是一个很特殊的 Intermetallic Compounds,硬度很高,但是基本没有 Ductility。和铁混合后,能够极大的改变铁原有的性质,体现在 Carbon 含量越高,钢的硬度越高,但是质地越脆。
这里介绍一下钢的读法:
比如 1018 Steel,前两者 10XX,是告诉我们刚里面有哪些元素(钢不止可以加碳,还可以加 Chromium 铬增加硬度和抗腐蚀性、Copper 铜增加机械加工性、Manganese 锰降低易碎程度、Molybdenum 钼稳定碳化物并且阻止晶粒增大、Nickel 镍可以增加韧性和抗腐蚀性、Vanadium 钒可以在稳定韧性的同时增加强度)
而后两个 XX18,则是告诉我们碳的含量,比如 18 就是 0.18% 的碳。
(写到这里去洗了个澡然后回来看到电脑上有页面顺手就关了……幸好有保存……吓死爸爸了……)
补充一个小知识:
Stainless Steels(不锈钢)分为三种:
Ferritic(铁素体不锈钢)— —含有大量的 Chromium(铬),以至于不会变为 Austenitic(奥氏体),价格低,抗氧化性好。
Austenitic(奥氏体不锈钢)— —含有 Nickel(镍),高韧性、高可塑性、低强度。
Martensitic (马氏体不锈钢,谢谢 @闻志恒 )— —比 Ferritic 含铬量低,目前非均匀相(别问我相什么意思……又可以说一大截……简单来说就是均匀的、可定义结构的、可知化学成分的混合体或单质,比如空气,比如冰)中可制造的最硬的钢。
然后介绍 Non-ferrous Alloys,以铝为例子:
Corrosion Resistance(抗腐蚀)
Ease of Fabrication(易铸造)
High Electrical and Thermal Properties(高导电导热性)
Light Weight(轻,对比 iPhone 4/4S 和 iPhone 5s 就大概知道)
Strength at Elevated Temps(温度基本不影响强度)
Aesthetically Appealing(美观,铁什么的都黑不溜秋的)
以上特性,请结合 Al 的晶体结构理解
然后,在张一刘先生答案中提到的:
我很明确告诉你,iPhone 5 外壳不是液态金属,它采用的是由金桥铝业生产的 AL6063 T6 型号铝合金(铝挤而成),通过数控机床加工型腔,外形,再注塑将上中下三个金属块连起来,再用数控机床加工,中间省略了(怕担上泄密罪名)最后阳极染色,这个外壳就加工好了。
我能说液态金属阳极染色的工艺不行么,其实就是连 AL7075 阳极染色都有问题。
中的 AL6063 和 AL7075 是什么意思呢?
不同于钢,铝的读法是
X-X-XX
其中第一个数字和钢差不多,是用来定义所加元素种类的:
1XXX – 99% Aluminum 基本是纯铝
2XXX – Copper 加铜
3XXX – Manganese 加猛
4XXX – Silicon 加硅
5XXX – Magnesium 加镁
6XXX – Magnesium & Silicon 这是硅和镁
7XXX – Zinc 锌
8XXX – Other Elements
而第二个数字,表示合金中的元素或杂质极限含量的控制要求,如果第 2 位为 0,则表示其杂质极限含量没有什么特殊的控制要求,如果是 1~9,数字越大,控制的要求越多,一般情况下是 0。
最后两位数,和钢不一样,用于指明这一种铝在同类型中的数字。
所以,我们知道,iPhone 5 所用的铝,是硅镁铝合金。为什么用了 6063 而非 6061(强度更高),因为 6063 更适合挤压后抛光和阳极氧化上色。
介绍完了材质,我们讲讲 Strain(应变)和 Stress(应力)
Strain(ℰ)
A material’s deformation reaction to an outside force or load
指的是材料对于外力作用的变形反应,原子通过破坏晶体结构来补偿外力作用。
想象一下两个人(当然可以是 3 个 4 个甚至更多人)在一起获得生命的大和谐时,你们身下的那张床和床垫……
根据姿势的不同,Strain 还有不同的表现:
Compressive 压缩
Tensile 拉伸
Shear 扭曲
想想真是活色生香……
Stress(σ)
How a material internally distributes the applied load.
请再三注意这个词,internally,内部的。
也就是,你和你女朋友获得生命的大和谐时,床垫里面的弹簧分散向各个部分的力。
为什么要强调这一点,等会高潮部分会说。
正常情况下,Strain 和 Stress 是成线性关系的:

但是直到外力不断施加……
就会到达一个叫做 Yield Point(屈服点,谢谢 @张小鱼怒 )的点,这个点,就是材料内部原子开始(一定注意是开始)从原始位置移动到新位置的点。(也就是上图中两条线的焦点)
然后继续施压,就变成了这幅萎样:

是的……高潮了……
这个点,叫做 Ultimate Tensile Strength (UTS)(极限抗拉强度)……过了这座山,东西就断了……

这是常见的几种材料的各种数据……
其中铝还是用了比 6063 更高强度的 6061
好了废话说了一大堆,开始正式的说 Amorphous Alloy(非晶态金属,俗称液态金属)是个啥子玩意了……
最后一次铺垫,真的,我发誓
我们来了解一下怎么改变金属性质:
看过金刚狼的孩子们应该记得,金刚狼的身体里,被改造后是大量的超高密度合金(和美国队长的盾牌一样),在电影里,有这么一段对话:
将军说:你知道把金属注入你身体最难的是什么吗?
将军自己回答:是保持超高密度合金的液态(把液态的粘稠物注入金刚狼的身体……OMG……难怪金刚狼当时那么痛苦后来那么撕心裂肺的想找将军)

谁爆我菊花!
这种熔化金属再凝固的过程,就是我们改变金属的一种方法:
Heat Treatment
The controlled heating and cooling of materials for the purpose of altering their structures and properties.
两个元素把握好,就可以控制金属,人人都是万磁王:
Temperature
Rate of Cooling
怎么做呢?
一步步来
我们知道金属有 Distinct crystalline lattice structure,倾向于 Form Naturally
当合金合成时,作为溶质的原子溶解进作为溶剂的原子,像这样:
然后不断的加热(Tempetrature),金属会溶解,成为 Molten State
这个时候,如果让金属冷却下来(我没有说速率 Rate 哟),金属原子就会失去能量,开始形成固体
怎么形成?失去能量的低能金属原子会开始重新排列(高潮完以后能量低,然后重新找伴侣的找伴侣,换姿势的换姿势)。这个时候,称为 Nucleation Points。
然后,找好伴侣,换好姿势的原子们,又开始重新形成 Grains,至于怎么形成,请看前面……具体表现在,Grains 的大小在各个方面变大
Grains 们又开始在 Grains Boundaries 遇见其他的 Grains,逐渐形成新的金属。
前面留了个坑,这个金属冷却的速率和温度都是改变金属性质的重要元素对吧?那么,速率有哪几种?
Full Anneal
Normalized
Quenched
这个我还把坑留着,等会再讲。
Heat Treatment 是一种方法,用于改变金属晶粒大小,但是这种加热并非唯一的方法,为什么?因为加热是为金属原子提供能量,是不是?只要能够提供能量,是不是我们也可以改变?
所以,如果我不停的去掰弯一根金属棒子(请不要想歪了),棒子会断是不是?
这就是第二种:
Strain Hardening
通过塑性形变,改变晶粒大小。
具体过程:
你得有一根硬棒子……
掰弯它……
在反过来掰弯它……
如此重复(请各位女同胞不要这样……很痛苦的)
这一弯一直,造成了大的晶粒不断的被折碎成小的晶粒
导致在 Grain boundaries 区域,内部的 Stress(应力)急剧增大(现在知道为什么前面反复强调应力是内部的了吧?)
应力与应变在一定程度上为线性(记得图吗?)
随着应变的增大,应力增大,然后 Grains 数量增加,大小减小,金属材料的整体 Ductility(延展性)下降(可以试试掰回形针,掰断以后你会发现断裂处很坚硬)
如果此时 Plactic Deformation 继续下去,那么就会造成材料的 Fracture。
这个时候,如果在第 9 步之前,我们为材料加热,热能会提供足够的能量给晶粒,以形成新的晶粒,那么就可以降低内部应力,提高 Ductility,材料不至于断裂,但是却被细分得足够小。
那么这个时候回到加热的速率问题:
先回忆一下晶粒大小对于金属性质的影响:
Smaller grains = Higher Hardness & Strength, Lower Ductility
Larger grains = Lower Hardness & Strength, Higher Ductility
现在回到之前提到的三种速率,不同的速率,会对同一种材料,造成截然不同的结果:
Full Anneal(最慢)
A material is heated above its phase transition temperature and allowed to slow cool inside of the furnace.
融化材料后,在烘箱中冷却(比如,针对 AL6061-O 可以从 940 摄氏度每隔 3 个小时下降 10 度),为原子形成晶粒提供足够的热量和时间,以形成足够大、整齐的晶粒。
产出来的东西,有足够的韧性。
Normalized(中间)
A material is heated above the phase transition temperature and allowed to cool in still air.
就是放在空气中冷却,不主动加热,也不主动降温。
左为 Full Anneal,右为 Normalized

Quenched(最快)
“Rapid” cooling of a material. Heat is removed from the material at an accelerated rate using various materials as a quenching media.
通过放在一些温度较低的媒介里,来达到急速降温的目的,比如:水、油、金属、沙子、高分子化合物等等……

这是 Martensite(目前最硬的钢,可以看出基本没有什么晶粒结构可言了)
好的,到这里,我们大概知道了,如果给金属的温度越高,冷却金属的速率越快,金属就会有越小的晶粒和越少的晶粒结构,直接影响就是越高的硬度和越低的 Ductility(延展性),反之则是更低的硬度和更高的延展性。
那么液态金属是什么?
是 Amorphous Alloy,非晶态合金,也就是说没有晶态结构,根本就没有晶粒,所以延展性低,但是相反的,硬度却极高,类似玻璃。那么为什么不用玻璃呢?因为玻璃基本没有延展性……Amorphous Alloy 虽然延展性低,但它依旧保留了部分的金属特性,包括有一定的延展性,只是针对常规晶态合金而言,低了不少。
这样的材料,用来做手机的外壳是相当合适的,既有超高的硬度(2.5 倍于钛合金,1.5 倍于不锈钢),又有一定的延展性不至于像玻璃一样稍微施加外力就会破碎,而且保持很轻的重量。但是问题在于成本过高,工艺要求高:
这是张茂同学简单的描述:
要么直接铸造急冷而成,要么在过冷液相区进行塑形加工而成。
解释一下,之前我们提到了 Martensite 是通过 Quenched 极冷铸造而成,那么假设一下,如果直接在金属保持 900 度以上高温的时候,瞬间降温会是什么结果?那么我们可以得到根本就是无序原子构成的合金,硬度也会远强于钢。
第二个问题是:面对大块的金属,怎么让金属内部和外部同时均匀、急速的冷却?这就是为什么苹果至今仍然没有将 iPhone 和 iPad 的外壳采用液态金属的原因。
为了达到这种条件,苹果甚至想通过反重力铸造来达到极限的冷却时间:

当然,理想总是好的,现实总是残酷的,我们现在也只能在 iPhone 的取卡针上看到液态金属的存在,希望有一天,不管是谁,能够找到相对简易的铸造方法,那个时候,也许 21 世纪就不会是“钛”的世纪而会是“液态金属”的世纪了。

㈡ 液态金属与水

能分析:已知Fe仅在烧红时就能与水反应生成四氧化三铁,而Fe3O4实际是氧化铁和氧化亚铁内的混合物,容所以在铁烧红时的温度下,H2O能够将0价铁氧化成+3价,而+3价的铁的氧化性比+2价的铜的氧化性还强,那么在这样的温度下,0价的铜也能被水氧化成+2价的氧化铜,而我们知道要是单质铜熔化需要的温度远不止烧红的铁的温度,那么要发生爆炸式的反应是极有可能的。

㈢ 液态金属是什么,液态金属的定义,发展以及用途

液态金属又称为非晶合金、金属玻璃,它是金属超急冷凝固时原子来不及有序排列结晶,而在室温或低温下保留液态原子无序排列的凝聚状态,这种非晶态原子结构使液态金属具备了许多独特的性能,如优异的耐蚀性、耐磨性、高强度、高硬度等。

相比传统金属,液态金属的优势体现在性能、工艺和成本三方面:

1. 性能上,液态金属被认为是目前最硬的轻合金,且它在散热性、电磁屏蔽性等方面也表现出众。

2. 工艺上,由于液态金属以非晶态冷却,收缩率非常小,可以通过注塑、压铸等工艺得到理想的形状,用液态金属做的零件尺寸精度非常高。

3. 成本方面,液态金属是一种清洁材料,生产过程中原料、产品等无毒副作用,对环境影响小,且液态金属制品基本上是一次性成型,省却大量的后加工,是一种绿色的材料。

发展历程

1938年,Kramen等人通过蒸发沉积,在玻璃冷基底上发现并首次报道了非晶态金属薄膜

1951年,Brenner等用电沉积法制备出了Ni-P及Co-P非晶合金,主要用于做耐磨和耐腐蚀涂层

1958年,Tumbull等人通过对氧化物玻璃、陶瓷玻璃和金属玻璃的相似性的分析,预言了合成非晶的可能性,揭开了非晶研究的序幕

1960年,美国Duwez教授采用熔体急冷法首先制得了Au70 Si30非晶薄带,标志着非晶态合金这一新材料研究领域的启动

1976年,国内开始了对非金合金的研究,并在“九五”期间,组建了“国家非晶微晶合金工程技术研究中心”,建立了“千吨级非晶带材生产线”

1988年,发现镧系、铝系和铜系合金有着较高的玻璃形成能力,含有钪的铝基非晶合金的抗拉强度可达约1500MPa

1992年,商用非晶合金Vitreloy 1在加州理工学院成功开发,并在此基础上开发很多同族的非晶合金

2004年,大块非晶钢(BMG)成功生产

2014年,我国在印刷电子学领域取得重大技术突破,成功研制世界首台室温液态金属打印机,可在任意表面绘制电路

2016年,我国继研发出自主运动的可变形液态金属机器之后,又发现液态金属具有类似细胞吞噬外界颗粒的“胞吞效应”

2018年,我国研究人员首次提出“液态金属悬浮3D 打印”的概念和方法

应用领域

航空航天、军事兵器、精密机械、汽车工业、医疗、3D打印…

来源:《揭秘未来100大潜力新材料(2019年版)》_新材料在线

㈣ 用元素符号或化学式表示:(1)常温下,唯一液态金属单质______;(2)密度最小的气体______;(3)地壳

(1)常温下,唯一液态金属单质是汞,其化学式为:Hg.
(2)氢气是密度最小的气体,其化学式为:H2
(3)地壳中含量最高的金属元素是铝元素,其元素符号为:Al.
(4)人体中含量最高的金属元素是该元素,其元素符号为:Ca.
(5)目前世界年产量最高的金属是铁,其化学式为:Fe.
(6)氧化铝中铝元素显+3价,氧元素显-2价,其化学式为:Al2O3
(7)碳酸钠中钠元素显+1价,碳酸根显-2价,其化学式为:Na2CO3
故答案为:(1)Hg;(2)H2;(3)Al;(4)Ca;(5)Fe;(6)Al2O3;(7)Na2CO3

㈤ 在温室下哪种是唯一的液态金属单质

(1)常温下,唯一液态金属单质是汞,其化学式为:Hg.
(2)氢气是密度最小的气体,其化学式为:H 2
(3)地壳中含量最高的金属元素是铝元素,其元素符号为:Al.
(4)人体中含量最高的金属元素是该元素,其元素符号为:Ca.
(5)目前世界年产量最高的金属是铁,其化学式为:Fe.
(6)氧化铝中铝元素显+3价,氧元素显-2价,其化学式为:Al 2 O 3
(7)碳酸钠中钠元素显+1价,碳酸根显-2价,其化学式为:Na 2 CO 3
故答案为:(1)Hg;(2)H 2 ;(3)Al;(4)Ca;(5)Fe;(6)Al 2 O 3 ;(7)Na 2 CO 3

㈥ 液态金属单质哪些不导电(铁水不导电;汞导电)

①铜是金属单质,能导电,既不是电解质也不是非电解质;②稀硫酸是混合物,能导电,既不是电解质也不是非电解质;③氯化氢是化合物,在水溶液中能导电,但熔融状态下并不导电,是电解质;④氨气是化合物,不能导电,是非电解质;⑤空气是混合物,既不。

㈦ 金属单质中,固态金属单质有液态金属单质有

金属除汞外都是固态
非金属单质中,固态非金属单质有CSPI2等
液态非金属单质高中阶段有唯一的Br2
气态非金属单质有F2CL2H2O2等

㈧ 在常温下为液体的单质是什么

汞(唯一的液态金属)
溴(唯一的液态非金属)
1、常温下为气体的单质只有H2、N2、O2(O3)、F2、Cl2(稀有气体单质除外)
2、常温下为液体的单质:Br2、Hg
3、常温下常见的无色液体化合物:H2O H2O2
4、常见的气体化合物: NH3、HX(F、Cl、Br、I)、H2S、CO、CO2、NO、NO2、SO2

㈨ 常见非金属液态单质有什么

溴单质,卤素之一,第四周期第七主族,化学符号Br,原子序数35. 『有什么疑问可以再问哈!』

热点内容
三个字的电影名 发布:2024-08-19 09:10:03 浏览:417
台湾红羊经典电影 发布:2024-08-19 09:02:17 浏览:767
搞笑电影范冰冰梁家辉开战 发布:2024-08-19 08:53:18 浏览:917
免费午夜激情 发布:2024-08-19 08:42:15 浏览:831
40分钟左右的英语电影 发布:2024-08-19 08:28:43 浏览:695
电影宋基美娜 发布:2024-08-19 08:27:04 浏览:942
宿舍都变成女的的电影 发布:2024-08-19 07:59:35 浏览:897
台湾恐怖片丧尸 发布:2024-08-19 07:57:21 浏览:179
免费观看qq群 发布:2024-08-19 07:53:00 浏览:921
4级片名字 发布:2024-08-19 07:39:14 浏览:553