土壤有效重金属含量是什么意思
⑴ 重金属在土壤中含量单位毫克每千克是什么含义
前面的毫克(mg)代表重金属含量,后面的千克(kg)代表土壤质量(千克)。
mg/kg 意思是“每千克土壤含重金属x毫克”,表示土壤中重金属含量的多少,含量越高污染越严重。
⑵ 土壤中重金属元素有效量
(一)土壤中重金属元素有效量提取剂及提取方法
土壤中重金属元素全量只是评价土壤重金属元素生物有效性和环境效应的基本前提,而对环境产生直接或潜在影响,或能被农作物吸收利用的,是土壤中重金属元素全量中有效量。土壤中重金属元素的有效量,并不是指以某个特定形态存在的组分,而是指以各种形态存在的组分中的活性部分。如果采用化学提取的方法,就是指能被某种提取剂提取的部分;如果采用农作物有效性的方法,就是指能够被农作物直接利用的部分。因此,有效提取土壤中重金属元素的有效量,并将其与农作物中重金属元素含量结合起来揭示其间的必然联系,是开展土壤重金属元素生态效应评价的首要前提,也是建立重金属元素生态效应评价体系和标准的基础。要进行重金属元素有效量提取,首先需要试制出有效的重金属元素有效量提取剂及相应的提取方法。
在勘查地球化学、土壤化学和环境化学研究领域,通常采用连续提取的方法研究介质中元素的存在形态,并以此来判断元素的活动性。连续提取法根据提取步骤和每一步所使用的提取剂的化学特性,将土壤中元素的存在形态划分为5种相态或7种相态,这种划分方法对于研究元素地球化学特性具有重要意义。如何根据形态分析结果确定元素的有效量尚不明确。因为在元素的各种存在形态中,水溶态和离子交换态的活动性较强,容易被农作物吸收;而其他各相态虽然不能被农作物直接吸收,但在一定环境条件下其中的一部分也可以转化为农作物可以吸收的形态。很显然,根据形态分析结果无法确定能被农作物吸收的有效量到底是多少。
在土壤中重金属元素有效量研究方面,农业部门广泛应用的元素有效态提取方法从理论到操作都比较成熟;但是有效态提取方法存在的一个缺憾是每一种方法只能针对某一种元素,至多两种元素,难以在大规模土壤重金属元素生态效应评价中推广应用。因为土壤重金属元素生态效应评价样品数量大,分析测试指标多。有效态提取方法更侧重农作物营养元素,对重金属元素,如As、Cd、Hg、Pb等的研究不多,而这些元素则是重金属元素生态效应评价中最重要的指标。
在有关元素有效态提取方法的试验研究中,关于通用型提取剂的研究已经有几十年的历史。所谓通用提取剂就是指能够同时提取一个以上可评价土壤肥力或有毒元素有效态部分的提取剂,也称为联合提取剂(VanRaij,1994)。这一思路和相应的方法可以在重金属元素有效量提取剂研制中借鉴。在通用型提取剂中,影响较大的有Mehlich3提取剂和AB-DTPA提取剂,这两种提取剂被认为是可以测定任何类型土壤中元素有效态的通用提取剂(Jones,1990)。这两种提取剂仍然是以提取农作物营养元素为重点,如Mehlich3提取剂把对有效P的提取放在首位;AB-DTPA主要针对Cu、Zn两个元素,也是从农作物营养元素来考虑的。近年来,有研究者尝试在土壤重金属元素生态效应评价中使用AB-DTPA提取剂,取得了一些进展(冯两蕊,2004;肖灵等,2004)。参考元素存在形态、有效态提取剂及提取方法研究应用现状,结合生态效应评价的现实需要,重金属元素有效量提取剂的研制即围绕AB-DTPA展开。
AB-DTPA(碳酸氢氨-二乙三胺五乙酸)提取剂的化学组成为1mol/LNH4HCO3-0.005mol/LDTPA(pH=7.6)。其中的DTPA可以配位Fe、Cu、Mn、Zn、Pb、Ni、Cd等重金属阳离子;浸提剂中的NH+4能够交换Na、K、Ca、Mg等碱土金属阳离子;振荡过程中,浸提剂中的HCO-3转化为CO2-3后,与Ca3(PO4)2中的Ca2+生成沉淀并释放出其中的PO3-4。同样原理,也可以释放出MoO3-4、BO3-3、AsO3-4、SeO2-4等含氧酸根阴离子(Soltanpour,1985),这些阴离子恰好是对作物有效的存在形态。对于酸性土壤,由于AB-DTPA提取剂为pH=7.6的近中性溶液,加入土壤后不会明显改变土壤酸碱性及元素存在形态,仍然能够以离子交换和配位作用方式提取各种阳离子和阴离子。从理论上分析,AB-DTPA就可以同时满足对不同酸碱类型土壤中元素有效量的提取。
AB-DTPA提取剂的有效性和实用性,通过AB-DTPA提取量与国家标准有效态提取方法提取量之间的相关性研究来确定。出于对比研究的需要,选择有国家标准有效态提取方法的Cu、Zn、B、Mo和Si等几个元素开展试验。结果证明,对于石灰性和酸性土壤,AB-DTPA提取的Cu、Zn有效量与国家标准有效态提取方法提取的Cu、Zn有效态含量相关性均达到极显著水平(α<0.01)(图6-22),说明用AB-DTPA提取剂能够反映土壤中这两个元素的有效量状况。
利用AB-DTPA法与国家标准有效态提取方法提取的土壤Mo、S、Si有效量含量的相关关系也都达到了极显著水平(α<0.01),说明AB-DTPA提取剂也可以用来表征土壤中Mo、S、Si等的有效量。
影响根系土中能被农作物直接吸收利用元素有效量的土壤理化特性包括pH值、电导率(EC)、有机碳(Org.C)含量、黏粒含量(nl)、阳离子交换量(CEC)等。在很多情况下,正是由于土壤理化特性的影响使得农作物中元素含量与根系土中元素含量之间的关系变得复杂和不确定。要了解农作物根系土与籽实中元素含量间的关系,就具体的某种重金属元素来说,首先要明确的是哪种或哪些土壤理化特性指标在影响其有效量与全量关系中起主导作用。
从现有的试验条件和试验研究需要出发,研究中对土壤pH值、有机碳含量、阳离子交换量、电导率、黏粒含量等几项能够量化的土壤理化特性指标进行了分析测试,在分析测试结果基础上应用SAS统计软件,在考虑了土壤理化特性影响的前提下,对农作物根系土中重金属元素有效量与全量间的关系进行了统计分析,统计结果的置信限α为5%,结果见表6-30。
为了保证方差的同质性,在进行统计分析之前,先将每一项指标的分析值转换为log10对数的形式(除pH外,因为pH已经是[H+]的对数)。这样,表6-30中所列示的农作物根系土中有效量与全量关系统计结果实际上是各项指标对数函数间的关系。表6-30展示出的对农作物根系土中有效量与全量关系产生影响的土壤理化特性指标,均是在第一步回归分析中显示出来的有显著影响的因子。
表6-30 农作物根系土中重金属元素有效量与全量相关关系
注:“—”表示土壤理化特性对元素有效态与全量间相关性的影响没有达到显著水平(α<0.05);EC为电导率,单位mS/cm;CEC为阳离子交换量,单位cmol/kg;Org.C为有机碳,单位%;nl为粒径小于2μm的土壤颗粒(黏粒)的百分含量,单位%。表中Cd、Hg含量单位为10-9,其余为10-6。
从表6-30中可以看出,在4个研究区中,对农作物根系土中有效量与全量关系产生最显著影响的土壤理化指标首推pH值,在第一步回归分析中共出现了12次,充分说明土壤pH值是影响根系土中元素有效量与全量之间关系的最主要土壤理化指标。除江苏研究区的As以外(该元素有效态主要以含氧酸根形式存在,因此随pH升高而升高),农作物根系土中其他元素的有效量都是随着土壤pH值升高而降低,二者呈现出负相关关系。已有研究证明,通常情况下pH值主要是通过影响元素在土壤中的存在形态进而影响其行为。对中性和酸性土壤而言,pH值的改变能使重金属元素以水溶态和离子交换态存在的量发生变化,从而改变元素的生物有效性;在石灰性土壤中,pH值变化对元素活动性的影响主要通过改变碳酸盐结合态与水溶态和离子交换态之间的转化方向而体现出来。大量盆栽试验和田间小区试验中用石灰调节土壤pH值,都有效控制了土壤溶液中的元素离子的浓度,从而降低了农作物对毒害元素的吸收(邵孝侯等,1993;李瑞美等,2003;Bujnovsky,1999),这些研究成果都证明了土壤pH值改变对元素有效量的调控功能。
在土壤pH值之后,对农作物根系土中有效量与全量关系产生显著影响的土壤理化指标依次是有机碳(Org.C)、黏粒(nl)等,其中有机碳(Org.C)在黑龙江-吉林研究区是最主要的影响因子。
土壤中元素的存在形态受土壤理化特性等因素影响,外部环境条件的改变只是影响土壤中元素存在形态及形态转变的外部因素,内因的影响也不可忽视,即自然风化、成壤过程中元素固有的存在形态特征。就表层土壤中累积的重金属元素而言,其叠加到土壤中的载体固有的存在形态,是决定其活动性的最根本因素。有研究结果证实,叠加到土壤中的重金属元素或以固体颗粒物为载体,或以矿物的形式存在(朱立新等,2004;马生明等,2004;Zhuetal,2005;马生明等,2007),这种稳定的存在形式是土壤理化性质变化所难改变的,由此就限制了这部分重金属元素的生态效应。
综上所述,土壤中元素的有效量受多方面因素的综合影响,这些因素既有自然环境方面的,也有土壤理化性质方面的,还有叠加物载体特性等。通过试验研究发现,无论哪一影响因素,均是通过控制元素的存在形态及形态转化进而影响重金属元素的有效量及其生态效应。
农作物根系土中,包括其他类型的土壤中重金属元素含量、有效量之间的相关性复杂多样,受到土壤理化特性等的影响;但是对某些重金属元素而言两者间的相关关系毕竟还是存在的,而且还与极个别农作物中重金属元素含量表现出一定的相关性。由此说明,土壤中重金属元素还是会对农作物的食品卫生质量等造成影响。土壤中重金属元素异常普遍存在,土壤中多数重金属元素含量与农作物食品卫生质量间的关系并不确定,在这种情况下如何评价普遍存在于土壤中的重金属元素异常的生态效应就成为亟待破解的难题。一条可能的有效途径是针对土壤中重金属元素异常的成因机理、异常组分存在形态特点等,以异常生态效应试验结果为基础,建立相应的评价标准,据此至少可以对存在于土壤中的重金属元素异常进行定性评价。
⑶ 区域土壤重金属元素有效量评价标准
按照上述确定土壤中重金属元素有效量界限值的方法,Ⅰ级界限值采用元素含量小于等于背景值的根系土样品的有效量来确定。为此,对根系土中元素含量小于等于背景值的样品对应的元素有效量进行了统计,统计结果即代表了土壤中元素有效量Ⅰ级标准界限值,结果见表7-17。
表7-17 区域土壤重金属元素有效量Ⅰ级标准界限值
注:Cd、Hg含量单位,10-9;其它元素含量单位,10-6。
按照上述原则,汇总表7-17、表7-18和表7-19的试验结果,得到各研究区土壤中重金属元素有效量的评价标准如表7-20所示。
需要说明的一点是,受环境条件、农作物本身根系发育情况、不同基因型农作物的选择性吸收等因素的综合影响,在很多情况下,利用化学分析方法测定的元素有效量与农作物体内的元素累积量之间的线性相关关系并不是很好。这也是农业部门在对农作物必需的大量营养元素氮、磷、钾等进行了大量研究工作得到的结论,尤其用农作物籽实中元素含量作为农作物元素吸收量指标时效果更差。因为籽实是农作物体内累积各种元素量相对比较少的部位,并且不同环境条件下,不同品种农作物根系吸收元素能力有差别。由根系向茎叶器官运输的能力不同,由茎叶再向籽实运输的能力又不同,土壤中的元素需要经过复杂的养分循环过程才能最终到达籽实。因此,决定籽实中元素含量的因素比较复杂,用籽实中重金属元素含量反映土壤中元素含量的能力远不如根茎叶。但是,对于粮食作物来说,籽实才是人类食用的主要部位,只能以籽实中元素的含量来评价其食品卫生质量,这也是研究中选择农作物籽实作为研究对象的原因。
⑷ 土壤中重金属超标如何处理
(一)常见治理方法
土壤重金属污染治理途径主要有两种,一是改变重金属在土壤中的存在状态,使其由活化态转为稳定态;二是从土壤中除去重金属。
常采用的物理及物理化学的方法时热解吸法、电化学法和提取法。对于挥发性重金属可用加热方法从土壤中解吸出来。若重金属渗透性不高且传导性差则用电化学法除去。提取法可利用试剂和土壤中的重金属作用,形成溶解性的重金属离子或金属试剂络合物,回收再利用。
(二)工程物理化学法
工程物理化学法是利用物理、化学等方法治理重金属污染土壤的方法。在重金属污染的初期,由于污染较集中,这种方法较为普遍采用,主要方法有:客土法、冲洗络合法、电动化学法、热处理法、物理固化法等。对于污染重、面积小的土壤运用物理化学法具有治理效果明显、迅速的优点,但对于污染面积较大的土壤则需要消耗大量的人力与财力,而且容易导致土壤结构的破坏和土壤肥力的下降,因此对于大面积重金属污染地不宜采用这种方法。
热处理法是将污染土壤加热,使土壤中的挥发性污染物挥发并收集起来进行回收或处理;电解法是使土壤中重金属在电解、电迁移、电渗和电泳等的作用下在阳极或阴极被移走。
(三)生物修复法
生物修复是指利用生物的新陈代谢活动减少土壤中重金属的浓度或使其形态发生改变,从而使污染的土壤环境能够部分或完全恢复到原始状态的过程。修复措施主要包括植物修复、微生物修复和动物修复等。因其具有效果好、投资省、费用低、易于管理与操作、不产生二次污染等优点,日益受到人们的重视,成为污染土壤修复研究及工程运用的热点。 1、植物修复措施
植物修复措施是以植物忍耐和超量积累某种或某些化学元素理论为基础,一些重金属污染区存在着对重金属具耐性的植物,这些植物通过排斥或在局部使重金属富集,使重金属在植株根部细胞壁沉淀而“束缚”其跨膜吸收,或与某些蛋白质、有机酸结合生成不具生物活性的解毒形式,从而提高了对重金属伤害的忍耐度。利用植物及其共存微生物体系清除环境中的污染物是一门新兴起的环境应用技术。植物治理措施的关键是寻找合适的超积累或耐重金属植物,超积累植物可吸收积累大量的重金属,但植物修复措施也有局限性,如超积累植物通常生物量低,生长缓慢,效果不显著。
2、微生物修复措施
微生物治理是利用土壤中的某些微生物对重金属具有吸收、沉淀、氧化和还原等作用,从而降低土壤中重金属的毒性。原核生物(细菌、放线菌)比真核生物(真菌)对重金属更敏感,利用此原理在土壤中培养富汞细菌,将这些细菌收集后,经蒸发、活性碳吸附等方法治理受汞污染的土壤。当前运用遗传、基因工程等生物技术,培育对重金属具有降毒能力的微生物,并运用于污染治理,是土壤重金属污染研究中较活跃的领域之一。
土壤重金属污染的微生物修复主要包括2方面:即生物吸附和生物氧化-还原。生物吸附是重金属被生物体吸附,如蓝细菌、硫酸还原菌以及某些藻类能够产生具有大量阳离子基团的胞外聚合物如多糖、糖蛋白等,并与重金属形成络合物;而生物氧化是微生物对重金属离子进行氧化、还原、甲基化和脱甲基化作用,降低土壤环境中重金属含量。
3、低等动物修复措施
土壤中的某些低等动物(如蚯蚓类)能吸收土壤中的重金属,因而能一定程度地降低污染土壤中重金属的含量。韩国有科学家运用蚯蚓毒理学试验对3个废弃的砷矿及重金属矿区尾矿进行修复实验,研究表明蚯蚓对锌和镉有良好的富集作用。由此可见,在重金属污染的土壤中放养蚯蚓,待其富集重金属后,采用电激、清水等方法驱出蚯蚓集中处理,对重金属污染土壤有一定的治理效果。
(四)农业治理方法
农业治理是因地制宜的改变一些耕作管理制度来减轻重金属的危害,在污染土壤上种植不进入食物链的植物。主要有:控制土壤水分是指通过控制土壤水分来调节其氧化还原电位,达到降低重金属污染的目的;选择化肥是指在不影响土壤供肥的情况下,选择最能降低土壤重金属污染的化肥;增施有机肥是指有机肥能够固定土壤中多种重金属以降低土壤重金属污染的措施;选择农作物品种是指选择抗污染的植物和不要在重金属污染的土壤上种植进入食物链的植物。
农业治理措施的优点是易操作、费用较低,缺点是周期长、效果不显著。 目前,土壤重金属污染治理的主要措施就是“预防为主,防治结合”。对于没有被污染的土壤以预防为主,切断污染源,提高土壤环境容量;对于已被污染的土壤主要是进行改造、治理,以消除污染。土壤重金属污染物的迁移转化非常复杂,治理极其艰难,必须引起人类的高度注重,杜绝土壤的重金属污染。
⑸ 土壤重金属的生物有效态含量一般怎样提取
最近几年,我国环境科学、土壤科学学术界对于土壤污染炒得十分火暴.翻翻杂志,有关土壤受重金属污染监测、治理文章非常多.在下发现一个非常奇特的概念---土壤中重金属有效态.关于有效态的定义可以参看由中国环境监测总站起草,由国家环保总局颁布的标准 HJ/T 166 -2004,该标准竟然把土壤用几种化学溶液诸如二乙三胺五乙酸(DTPA)、水浸液、0.1 HCL或其它电解质溶液的可萃取态统统看作为有效态(bioavailable form)!本人对此表示质疑,百思不得其解!
标准制订者的初衷是希望用某种化学提取方法把土壤中可以移动的那部分重金属污染物加以测定,用这样数值与初级农产品中重金属含量拉上钩,从而一举预测土壤中重金属经过土壤-农作物系统发生转移的定量关系!但是,国内外大量科学实验研究证实:到目前为止,还无法达到这一目标,由于生物多样性,土壤多样性,影响土壤---作物发生重金属转移因素的多样性,是无法建立起这种定量关系的.而且,单用化学分析方法是无法测定土壤中重金属有效态的.ISO颁布的土壤质量标准测定方法的确有用DTPA提取土壤中重金属的标准方法,但是,所提取的重金属量只能称之为DTPA提取态.如果按照标准 HJ/T 166 -2004的说法,只用化学溶液提取,就是有效态,而且有多种有效态提取方法,那不就乱了套吗?难怪有的学者前些日子竟然要制订土壤中重金属有效态的限量标准,而且还得到某位工程院士认可!在下孤陋寡闻,希望中国环境监测总站的专家解释一下土壤中重金属有效态的定义!
⑹ 土壤 重金属 含量 国家标准
GB 15618-1995 土壤环境质量标准 扫描版 810KB
易启标准网有这些全文电子版免费下载的.
下载方法,先在网络搜索到易启标准网,打开网站后免费注册成为会员,登陆后搜索您要的标准或者书籍,然后下载.如有问题可参考这个网站的帮助文件的.
下面的相关标准供参考下载:
NY/T 1121.1-2006 土壤检测 第1部分:土壤样品的采集、处理和贮存 764KB
NY/T 1121.11-2006 土壤检测 第11部分:土壤总砷的测定 558KB
NY/T 1121.10-2006 土壤检测 第10部分:土壤总汞的测定 629KB
NY/T 1104-2006 土壤中全硒的测定 949KB
JB/T 7877-1999土壤耕作机械凹面圆盘 332KB
JB/T 7877-1999 土壤耕作机械 凹面圆盘 244KB
JB/T 6272-1992 中耕机 土壤工作部件 491KB
HJ/T 25-1999 工业企业土壤环境质量风险评价基准 扫描版 602KB
HJ/T 166-2004 土壤环境监测技术规范 扫描版 2253KB
HJ 53-2000 拟开放场址土壤中剩余放射性可接受水平规定(暂行) 扫描版 527KB
HJ 350-2007 展览会用地土壤环境质量评价标准(暂行) 1281KB
CJ/T 3073-1998 土壤固化剂 363KB
GB/T 20089-2006 土壤耕作机械 桦式犁工作部件 词汇 124KB
GB/T 20087-2006 土壤耕作机械 旋转式中耕机刀片 安装尺寸 43KB
GB/T 20086-2006 土壤耕作机械 镇压器 联接方式和工作幅宽 81KB
GB/T 18834-2002 土壤质量 词汇 扫描版 4205KB
GB/T 6274-1997肥料和土壤调理剂术语 538KB
GB/T 17141-1997土壤质量铅、镉的测定石墨炉原子吸收分光光度法 481KB
GB/T 17141-1997 土壤质量 铅、镉的测定 石墨炉原子吸收分光光度法 扫描版 733KB
GB/T 17140-1997 土壤质量 铅、镉的测定 KI-MIBK萃取火焰原子吸收分光光度法 扫描版 813KB
GB/T 17139-1997 土壤质量 镍的测定 火焰原子吸收分光光度法 扫描版 606KB
GB/T 17138-1997 土壤质量 铜、锌的测定 火焰原子吸收分光光度法 扫描版 896KB
GB/T 17137-1997 土壤质量 总铬的测定 火焰原子吸收分光光度法 扫描版 723KB
GB/T 17136-1997 土壤质量 总汞的测定 冷原子吸收分光光度法 扫描版 1190KB
GB/T 17135-1997 土壤质量 总砷的测定 硼氢化钾-硝酸银分光光度法 扫描版 863KB
GB/T 17134-1997 土壤质量 总砷的测定 二乙基二硫代氨基甲酸银分光光度法 扫描版 591KB
GB/T 14552-1993 水和土壤质量 有机磷农药的测定 气相色谱法 扫描版 1778KB
GB/T 14550-93 土壤质量 六六六和滴滴涕的测定气相色谱法 扫描版 375KB
GB 15618-1995土壤环境质量标准 810KB
GB 15618-1995 土壤环境质量标准 扫描版 810KB
GB 11220.1-99土壤中铀的测定 124KB
GB/T 11219.2-1989 土壤中钚的测定 离子交换法 扫描版 164KB
GB 9836-88土壤全钾测定法 162KB
GB 9835-88土壤碳酸盐测定法 89KB
GB 8834-1988 土壤有机质测定法 137KB
GB 7888-87森林土壤渗透性的测定 137KB
GB 7883-87森林土壤易还原锰的测定 76KB
GB 7879-87森林土壤有效铜的测定 134KB
GB 7878-87森林土壤有效钼的测定 210KB
GB 7877-87森林土壤有效硼的测定 100KB
GB 7876-87森林土壤烧失量的测定 55KB
GB 7875-87森林土壤全硫的测定 228KB
GB 7874-87森林土壤全钾、全钠的测定 238KB
GB 7872-87森林土壤粘粒的提取 226KB
GB 7871-87森林土壤水溶性盐分分析 790KB
GB 7865-87森林土壤交换性钙和镁的测定 128KB
GB 7864-87森林土壤交换性盐基总量的测定 74KB
GB 7848-87森林土壤坚实度的测定 100KB
GB 7844-87森林土壤比重的测定 79KB
GB 7839-87森林土壤温度的测定 70KB
GB 7836-87森林土壤最大吸湿水的测定 58KB
GB 7833-87森林土壤含水量的测定 100KB
GB 7680-87森林土壤有效锌的测定 176KB
GB 6260-86土壤中氧化稀土总量的测定对马尿酸偶氮氯膦分光光度法 180KB
GB 11728-89土壤中铜的卫生标准 607KB
GB 11220.2-89土壤中铀的测定三烷基氧膦萃取-固体荧光法 151KB
GB 11220.2-89 土壤中铀的测定 三烷基氧膦萃取-固体荧光法 扫描版 146KB
GB 11220.1-89 土壤中铀的测定 CL-5209萃淋树脂分离2-(5-溴-2-吡啶偶氮)-5-二乙氨基苯酚分光光度法 扫描版 124KB
GB 11219.2-89土壤中钚的测定离子交换法 163KB
GB 11219.1-89土壤中钚的测定萃取色层法 237KB
HJ 77.4-2008 土壤和沉积物 二恶英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法(发布稿).pdf 390KB
DZT 0130.5-2006 地质矿产实验室测试质量管理规范 第5部分:多目标地球化学调查(1:250000)土壤样品化学成分分析.pdf 2193KB
JBT 6272-2007 中耕机 土壤工作部件.pdf 562KB
GB/T 22104-2008 土壤质量 氟化物的测定 离子选择电极法(印章处不清晰) 256KB
GB/T 22105.1-2008 土壤质量 总汞、总砷、总铅的测定原子荧光法 第1部分:土壤中总汞的测定(印章处不清晰) 280KB
GB/T 22105.2-2008 土壤质量 总汞、总砷、总铅的测定原子荧光法 第2部分:土壤中总砷的测定(印章处不清晰) 260KB
GB/T 22105.3-2008 土壤质量 总汞、总砷、总铅的测定原子荧光法 第3部分:土壤中总铅的测定(印章处不清晰) 294KB
NY/T 1616-2008 土壤中9种磺酰脲类除草剂残留量的测定 液相色谱-质谱法 316KB
NY/T 1615-2008 石灰性土壤交换性盐基及盐基总量的测定 259KB
NY/T 1613-2008 土壤质量 重金属测定王水回流消解原子吸收法 486KB
NY/T 1121.21-2008 土壤检测 第21部分:土壤最大吸湿量的测定 143KB
NY/T 1121.20-2008 土壤检测 第20部分:土壤微团聚体组成的测定 451KB
NY/T 1121.19-2008 土壤检测 第19部分:土壤水稳性大团聚体组成的测定 247KB
DB51/T 836-2008 土壤中总示、总砷的测定 原子荧光光谱法 147KB
NY/T 1377-2007 土壤中pH值的测定 192KB
NY/T 1378-2007 土壤氯离子含量的测定 381KB
QX/T 75-2007 土壤湿度的微波炉测定 2001KB
SL 190-2007 土壤侵蚀分类分级标准(包含条文说明)(单行本完整清晰扫描版) 12037KB
GB/T 17949.1-2000 接地系统的土壤电阻率、接地阻抗和地面电位测量导则 第1部分:常规测量 1401KB
LY/T 1237-1999森林土壤有机质的测定及碳氮化的计算 143KB
LY/T 1236-1999森林土壤速效钾的测定 86KB
LY/T 1234-1999森林土壤全钾的测定 138KB
LY/T 1233-1999森林土壤有效磷的测定 147KB
LY/T 1232-1999森林土壤全磷的测定 174KB
LY/T 1229-1999森林土壤水解性氮的测定 99KB
LY/T 1225-1999森林土壤颗粒组成(机械组成)的测定 467KB
LY/T 1223-1999森林土壤坚实度的测定 149KB
LY/T 1218-1999森林土壤渗滤率的测定 155KB
LY/T 1217-1999森林土壤稳定凋萎含水量的测定 60KB
LY/T 1213-1999森林土壤含水量的测定 119KB
LY/T 1212-1999森林土壤水和天然水样品的采集与保存 81KB
LY/T 1210-1999森林土壤样品的采集与制备 368KB
GB/T 14550-2003 土壤中六六六和滴滴涕测定的气相色谱法 233KB
WS/T 88-1996煤及土壤中总氟测定方法燃烧水解?离子选择电极法标准 132KB
GB/T 20087-2006土壤耕作机械旋转式中耕机刀片安装尺寸 45KB
GB/T 20086-2006土壤耕作机械镇压器联接方式和工作幅宽 83KB
GB/T 14552-93水和土壤质量有机磷农药的测定气相色谱法 1720KB
WS/T 88-1996 煤及土壤中总氟测定方法 燃烧水解-离子选择电极法 540KB
NY/T 890-2004土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法 1113KB
NY/T 889-2004土壤速效钾和缓效钾含量的测定 136KB
NY/T 295-1995中性土壤阳离子交换量和交换性盐基的测定 216KB
NY/T 1155.6-2006 农药室内生物测定试验准则 除草剂 第6部分:对作物的安全型试验 土壤喷雾法 496KB
NY/T 1155.5-2006 农药室内生物测定试验准则 除草剂 第5部分:水田除草剂土壤活性测定试验浇灌法 465KB
NY/T 1155.3-2006 农药室内生物测定试验准则 除草剂 第3部分:活性测定试验 土壤喷雾法 560KB
NY/T 1153.3-2006 农药登记用白蚁防治剂 药效试验方法及评价 第3部分:农药土壤处理防治白蚁 677KB
NY/T 1121.9-2006 土壤检测 第9部分:土壤有效钼的测定 490KB
NY/T 1121.8-2006 土壤检测 第8部分:土壤有效硼的测定 582KB
NY/T 1121.7-2006 土壤检测 第7部分:酸性土壤有效磷的测定 542KB
NY/T 1121.6-2006 土壤检测 第6部分:土壤有机质的测定 629KB
NY/T 1121.5-2006 土壤检测 第5部分:石灰性土壤阳离子交换量的测定 609KB
NY/T 1121.4-2006 土壤检测 第4部分:土壤容重的测定 408KB
NY/T 1121.3-2006 土壤检测 第3部分:土壤机械组成的测定 1513KB
NY/T 1121.2-2006 土壤检测 第2部分:土壤pH的测定 586KB
NY/T 1121.18-2006 土壤检测 第18部分:土壤硫酸根离子含量的测定 576KB
NY/T 1121.17-2006 土壤检测 第17部分:土壤氯离子含量的测定 433KB
NY/T 1121.16-2006 土壤检测 第16部分:土壤水溶性盐总量的测定 546KB
NY/T 1121.15-2006 土壤检测 第15部分:土壤有效硅的测定 483KB
NY/T 1121.14-2006 土壤检测 第14部分:土壤有效硫的测定 466KB
NY/T 1121.13-2006 土壤检测 第13部分:土壤交换性钙和镁的测定 678KB
NY/T 1121.12-2006 土壤检测 第12部分:土壤总铬的测定 567KB
GB 11219.1-89 土壤中钚的测定 萃取色层法 扫描版 240KB
⑺ 什么是土壤中重金属有效态
最近几年,我国环境科学、土壤科学学术界对于土壤污染炒得十分火暴。翻翻杂志,有关土壤受重金属污染监测、治理文章非常多。在下发现一个非常奇特的概念---土壤中重金属有效态。关于有效态的定义可以参看由中国环境监测总站起草,由国家环保总局颁布的标准 HJ/T 166 -2004,该标准竟然把土壤用几种化学溶液诸如二乙三胺五乙酸(DTPA)、水浸液、0.1 HCL或其它电解质溶液的可萃取态统统看作为有效态(bioavailable form)!本人对此表示质疑,百思不得其解!
标准制订者的初衷是希望用某种化学提取方法把土壤中可以移动的那部分重金属污染物加以测定,用这样数值与初级农产品中重金属含量拉上钩,从而一举预测土壤中重金属经过土壤-农作物系统发生转移的定量关系!但是,国内外大量科学实验研究证实:到目前为止,还无法达到这一目标,由于生物多样性,土壤多样性,影响土壤---作物发生重金属转移因素的多样性,是无法建立起这种定量关系的。而且,单用化学分析方法是无法测定土壤中重金属有效态的。ISO颁布的土壤质量标准测定方法的确有用DTPA提取土壤中重金属的标准方法,但是,所提取的重金属量只能称之为DTPA提取态。如果按照标准 HJ/T 166 -2004的说法,只用化学溶液提取,就是有效态,而且有多种有效态提取方法,那不就乱了套吗?难怪有的学者前些日子竟然要制订土壤中重金属有效态的限量标准,而且还得到某位工程院士认可!在下孤陋寡闻,希望中国环境监测总站的专家解释一下土壤中重金属有效态的定义!
⑻ 国家标准土壤中的重金属含量 谢谢 更加分
易启网找标准就很难找到,还有好像要是高级会员才能下载的吧?
我现在都有用《工标网》查询标准,你可以到那查询吖
⑼ 为什么说土壤有效态重金属含量只是个操作定义
重金属在土壤中是有效态还是无效态不是绝对的,而是一个动态平衡的过程,若植物吸收了有效态的,那么以前是无效态的就会有部分活化成有效态,而且他的测定值也不是一个绝对的数值,用不同的浸提剂来提取,测定的结果会有所不同。