我国核燃料如何开采
Ⅰ 我国核电站运行所需的核燃料是怎么来的这是国家机密吗有谁能说一说它的具体过程
铀燃料最原始的东西是铀矿石,铀矿床是经过核工业部所属的地质勘探内队经过普查勘探得来容的,它的最低工业品位为5/1万(即10000吨矿石能提炼出5吨纯铀),然后经过开采,加工,溶缩成成品铀,就可以作为核电站的燃料。
在70年代前,如果是勘探到露天开采的矿床,勘探工作完成后马上开采。
含铀100吨以上的矿体,即为可开采矿床。
在50——60年代,由于急用铀原料,在地质普查过程中,找到的含量较高的异常点、矿化点、小矿体,等不到进行综合评价和进一步勘探,立即进行开采,用肩挑,麻袋装,但是具体做这些事的人都不知道是做什么用的,可见当时的保密程度。
从普查、勘探、开采、加工的一系列工序都是保密的,在50年代属绝密(到了现在也是保密的)。甚至连具体参加这项工作的人都不知道是做什么用的,因为以前是作为原子弹的原料,怕泄密让外国人知道。
寻找和开采铀矿的(有部分是部队编制的),其单位名称都是用编号的。再进一步体现他的神秘性。
其具体过程大楷就是这样的,由于保密的原因,也不能说得太详细、太具体。
Ⅱ 我国已经建成了怎样的完整的核燃料循环工业体系
,对完整军事工业体系国家的判断,尚没有一个非常准确的标准,所以对拥有完整军事工业体系的国家数量还是有一些争议的。个人判断——
拥有完整军事工业体系,不是指在某一领域、某些领域军事工业拥有超前的技术,而是在所有军事、国防领域都拥有完善的军事技术。由此判断,拥有独立完善军工体系的国家当属美国与俄罗斯。美国的军工体系比俄国还要完整发达,俄国在新兴的电子信息产业上大大落后于美国,这导致俄国在军用电子芯片上的研制有缺陷。法国也有相对完整的军事工业体系,可以独立研制先进的战斗机、主战坦克、核潜艇以及核动力航母等等,此外法国也可以为自己的先进战斗机提供先进的大功率航空发动机。个人判断,中国已经步入军事工业体系国家,但就目前情况看,显然仅仅是步入,比如电子芯片技术、智能机器人技术、航空发动机技术,较美俄法都有相对的差距。此外,英国、日本、德国等过国家虽然也拥有高度发达的军事工业,但终究又有各自的短板,军事工业技术上对其他国家还有一定依赖。
个人看法,未必准确,仅供参考。
Ⅲ 清洁核聚变燃料是什么意思为何氦三会在月壤而非地球积累如何勘探开采利用月球
清洁燃料是燃烧后不产生有害物质的燃料。
在地球上,燃烧木材、煤炭、石油等都会产生二氧化碳等,会造成大气层中二氧化碳含量上升,引发温室效应,所以这些燃料不是清洁燃料。现在的核电站使用核裂变物质,如铀235等,会产生核辐射,还会产生难以处理的放射性核废料,也不是清洁燃料。
目前,人类利用的清洁能源有太阳能、水能、风能、海洋能等,但总量不大,不能满足人类需要。
而氢核聚变比起其他燃料来说“干净”了许多,但还是会产生中子等辐射,不算最“清洁”。而利用氦3进行核聚变,不会产生其他物质,是最清洁的燃料。按目前的世界能源需求,100吨氦3就能满足全球的能源所需。
氦3来源于太阳上发生的热核聚变,太阳风带着氦3向四周扩散。月球由于没有大气层,氦3能够到达月球表面,所以成为很好的氦3“收集器”,并贮存在月球的土壤中。在月球诞生的45亿多年的时间里不停的收集着氦3。所以,月球表面存在着大量的氦3,估计储量有100万吨。
当然,月球土壤中的氦3也会逃逸到宇宙空间中去,所以月球土壤中的氦3总是保持着一定的含量。如果把月球土壤中的氦3提取出来,过一段时间,氦3又会在月球土壤中积累下来,还可以继续提取。
而地球有磁场和大气层,来自太阳的氦3被地球磁场偏转和大气层的阻挡无法到达地面,所以地球上只有极少量的氦3,无法提取利用。
要开采月球上的氦3不是一件容易的事。
第一,氦3的开采是困难的。首先要建立一个可以长期居住的、功能完善、可以基本自我维持的月球基地,然后还要派人上去长期值守,用加热月球土壤再收集压缩气体的办法开采并提炼氦3。而这些技术目前还不具备。
第二,核聚变反应的技术尚未研发成功,目前还没有对这种安全的核燃料的需求。
第三,目前正在研发的核聚变反应堆利用的是氚氘作为聚变材料。而氘在地球上的含量非常丰富,足够人类用到地球毁灭,按现在的能源消耗量,足够用上百亿年。用于生产氚的锂的储量也非常丰富。虽然这种核聚变反应堆会产生大量的核辐射,但防护措施做好也是安全的。
第四,需要的资金量太大。据估算,完成这个计划需要2500~3000亿美元,花费30~40年的时间。
Ⅳ 核原料从开采到使用包括哪些环节,其中最重要的是哪个
从山里开采铀矿,然后提炼。应该是把材料装在密封的地方 辐射不出来的说
Ⅳ 氢能源在哪里开发
氢能源的开发与利用
当今世界开发新能源迫在眉睫,原因是目前所用的能源如石油、天然气、煤,均属不可再生资源,地球上存量有限,而人类生存又时刻离不开能源,所以必须寻找新的能源。
氢能是一种二次能源,它是通过一定的方法利用其它能源制取的,而不像煤、石油和天然气等可以直接从地下开采、几乎完全依靠化石燃料。随着石化燃料耗量的日益增加,其储量日益减少,终有一天这些资源将要枯竭,这就迫切需要寻找一种不依赖化石燃料的储量丰富的新的含能体能源。氢正是这样一种在常规能源危机的出现和开发新的二次能源的同时,人们期待的新的二次能源。 氢位于元素周期表之首,原子序数为1,常温常压下为气态,超低温高压下为液态。作为一种理想的新的合能体能源,它具有以下特点:
l、重量最轻的元素。标准状态下,密度为 0.8999g/l,-252.7℃时,可成为液体,若将压力增大到数百个大气压,液氢可变为金属氢。
2、导热性最好的气体,比大多数气体的导热系数高出10倍。
3、自然界存在最普遍的元素。据估计它构成了宇宙质量的 75%,除空气中含有氢气外,它主要以化合物的形态贮存于水中,而水是地球上最广泛的物质。据推算,如把海水中的氢全部提取出来,它所产生的总热量比地球上所有化石燃料放出的热量还大9000倍。
4、除核燃料外氢的发热值是所有化石燃料、化工燃料和生物燃料中最高的,为142,351kJ/kg,是汽油发热值的3倍。
5、燃烧性能好,点燃快,与空气混合时有广泛的可燃范围,而且燃点高,燃烧速度快。
6、无毒,与其他燃料相比氢燃烧时最清洁滁生成水和少量氮化氢外不会产生诸如一氧化碳、二氧化碳、碳氢化合物、铅化物和粉尘颗粒等对环境有害的污染物质,少量的氮化氢经过适当处理也不会污染环境,且燃烧生成的水还可继续制氢,反复循环使用。产物水无腐蚀性,对设备无损。
7、利用形式多。既可以通过燃烧产生热能,在热力发动机中产生机械功,又可以作为能源材料用于燃料电池,或转换成固态氢用作结构材料。
8、可以以气态、液态或固态的金属氢化物出现,能适应贮运及各种应用环境的不同要求。
9、可以取消远距离高压输电,代以远近距离管道输氢,安全性相对提高,能源无效损耗减小。
10、氢取消了内燃机噪声源和能源污染隐患,利用率高。
11、氢可以减轻燃料自重,可以增加运载工具有效载荷,这样可以降低运输成本从全程效益考虑社会总效益优于其他能源。
时至今日,氢能的利用已有长足进步。自从1965年美国开始研制液氢发动机以来,相继研制成功了各种类型的喷气式和火箭式发动机。美国的航天飞机已成功使用液氢做燃料。我国长征2号、3号也使用液氢做燃料。利用液氢代替柴油,用于铁路机车或一般汽车的研制也十分活跃。氢汽车靠氢燃料、氢燃料电池运行也是沟通电力系统和氢能体系的重要手段。
目前,世界各国正在研究如何能大量而廉价的生产氢。利用太阳能来分解水是一个主要研究方向,在光的作用下将水分解成氢气和氧气,关键在于找到一种合适的催化剂。如今世界上有50多个实验室在进行研究,至今尚未有重大突破,但它蕴育着广阔的前景。
发展氢能源,将为建立一个美好、无污染的新世界迈出重要一步。
在众多的新能源中,氢能将会成为21世纪最理想的能源。这是因为,在燃烧相同重量的煤、汽油和氢气的情况下,氢气产生的能量最多,而且它燃烧的产物是水,没有灰渣和废气,不会污染环境;而煤和石油燃烧生成的是二氧化碳和二氧化硫,可分别产生温室效应和酸雨。煤和石油的储量是有限的,而氢主要存于水中,燃烧后唯一的产物也是水,可源源不断地产生氢气,永远不会用完。
氢是一种无色的气体。燃烧一克氢能释放出142千焦尔的热量,是汽油发热量的3倍。氢的重量特别轻,它比汽油、天然气、煤油都轻多了,因而携带、运送方便,是航天、航空等高速飞行交通工具最合适的燃料。氢在氧气里能够燃烧,氢气火焰的温度可高达2500℃,因而人们常用氢气切割或者焊接钢铁材料。
在大自然中,氢的分布很广泛。水就是氢的大“仓库”,其中含有11%的氢。泥土里约有1.5%的氢;石油、煤炭、天然气、动植物体内等都含有氢。氢的主体是以化合物水的形式存在的,而地球表面约70%为水所覆盖,储水量很大,因此可以说,氢是“取之不尽、用之不竭”的能源。如果能用合适的方法从水中制取氢,那么氢也将是一种价格相当便宜的能源。
氢的用途很广,适用性强。它不仅能用作燃料,而且金属氢化物具有化学能、热能和机械能相互转换的功能。例如,储氢金属具有吸氢放热和吸热放氢的本领,可将热量储存起来,作为房间内取暖和空调使用。
氢作为气体燃料,首先被应用在汽车上。1976年5月,美国研制出一种以氢作燃料的汽车;后来,日本也研制成功一种以液态氢为燃料的汽车;70年代末期,前联邦德国的奔驰汽车公司已对氢气进行了试验,他们仅用了五千克氢,就使汽车行驶了110公里。
用氢作为汽车燃料,不仅干净,在低温下容易发动,而且对发动机的腐蚀作用小,可延长发动机的使用寿命。由于氢气与空气能够均匀混合,完全可省去一般汽车上所用的汽化器,从而可简化现有汽车的构造。更令人感兴趣的是,只要在汽油中加入4%的氢气。用它作为汽车发动机燃料,就可节油40%,而且无需对汽油发动机作多大的改进。
氢气在一定压力和温度下很容易变成液体,因而将它用铁罐车、公路拖车或者轮船运输都很方便。液态的氢既可用作汽车、飞机的燃料,也可用作火箭、导弹的燃料。美国飞往月球的“阿波罗”号宇宙飞船和我国发射人造卫星的长征运载火箭,都是用液态氢作燃料的。
另外,使用氢—氢燃料电池还可以把氢能直接转化成电能,使氢能的利用更为方便。目前,这种燃料电池已在宇宙飞船和潜水艇上得到使用,效果不错。当然,由于成本较高,一时还难以普遍使用。
现在世界上氢的年产量约为3600万吨,其中绝大部分是从石油、煤炭和天然气中制取的,这就得消耗本来就很紧缺的矿物燃料;另有4%的氢是用电解水的方法制取的,但消耗的电能太多,很不划算,因此,人们正在积极探索研究制氢新方法。
随着太阳能研究和利用的发展,人们已开始利用阳光分解水来制取氢气。在水中放入催化剂,在阳光照射下,催化剂便能激发光化学反应,把水分解成氢和氧。例如,二氧化钛和某些含钌的化合物,就是较适用的光水解催化剂。人们预计,一旦当更有效的催化剂问世时,水中取“火”——制氢就成为可能,到那时,人们只要在汽车、飞机等油箱中装满水,再加入光水解催化剂,那么,在阳光照射下,水便能不断地分解出氢,成为发动机的能源。
本世纪70年代,人们用半导体材料钛酸锶作光电极,金属铂作暗电极,将它们连在一起,然后放入水里,通过阳光的照射,就在铂电极上释放出氢气,而在钛酸锶电极上释放出氧气,这就是我们通常所说的光电解水制取氢气法。
科学家们还发现,一些微生物也能在阳光作用下制取氢。人们利用在光合作用下可以释放氢的微生物,通过氢化酶诱发电子,把水里的氢离子结合起来,生成氢气。前苏联的科学家们已在湖沼里发现了这样的微生物,他们把这种微生物放在适合它生存的特殊器皿里,然后将微生物产生出来的氢气收集在氢气瓶里。这种微生物含有大量的蛋白质,除了能放出氢气外,还可以用于制药和生产维生素,以及用它作牧畜和家禽的饲料。现在,人们正在设法培养能高效产氢的这类微生物,以适应开发利用新能源的需要。
引人注意的是,许多原始的低等生物在新陈代谢的过程中也可放出氢气。例如,许多细菌可在一定条件下放出氢。日本已找到一种叫做“红鞭毛杆菌”的细菌,就是个制氢的能手。在玻璃器皿内,以淀粉作原料,掺入一些其他营养素制成的培养液就可培养出这种细菌,这时,在玻璃器皿内便会产生出氢气。这种细菌制氢的效能颇高,每消耗五毫升的淀粉营养液,就可产生出25毫升的氢气。
美国宇航部门准备把一种光合细菌——红螺菌带到太空中去,用它放出的氢气作为能源供航天器使用。这种细菌的生长与繁殖很快,而且培养方法简单易行,既可在农副产品废水废渣中培养,也可以在乳制品加工厂的垃圾中培育。
对于制取氢气,有人提出了一个大胆的设想:将来建造一些为电解水制取氢气的专用核电站。譬如,建造一些人工海岛,把核电站建在这些海岛上,电解用水和冷却用水均取自海水。由于海岛远离居民区,所以既安全,又经济。制取的氢和氧,用铺设在水下的通气管道输入陆地,以便供人们随时使用。
Ⅵ 铀是如何提取的
最重的天然元素铀已经成为新能源的主角,那么铀又是怎样提炼出来的呢? 在居里夫妇发现镭以后,由于镭具有治疗癌症的特殊功效,镭的需要量不断增加,因此许多国家开始从沥青铀矿中提炼镭,而提炼过镭的含铀矿渣就堆在一边,成了“废料”。 然而,铀核裂变现象发现后,铀变成了最重要的元素之一。这些“废料”也就成了“宝贝”。从此,铀的开采工业大大地发展起来,并迅速地建立起了独立完整的原子能工业体系。 铀是一种带有银白色光泽的金属,比铜稍软,具有很好的延展性,很纯的铀能拉成直径0.35毫米的细丝或展成厚度0.1毫米的薄箔。铀的比重很大,与黄金差不多,每立方厘米约重19克,像接力棒那样的一根铀棒,竟有十来公斤重。 铀的化学性质很活泼,易与大多数非金属元素发生反应。块状的金属铀暴露在空气中时,表面被氧化层覆盖而失去光泽。粉末状铀于室温下,在空气中,甚至在水中就会自燃。美国用贫化铀制造的一种高效的燃烧穿甲弹—“贫铀弹”,能烧穿30厘米厚的装甲钢板,“贫铀弹”利用的就是铀极重而又易燃这两种性质。 铀元素在自然界的分布相当广泛,地壳中铀的平均含量约为百万分之2.5,即平均每吨地壳物质中约含2.5克铀,这比钨、汞、金、银等元素的含量还高。铀在各种岩石中的含量很不均匀。例如在花岗岩中的含量就要高些,平均每吨含3.5克铀。依此推算,一立方公里的花岗岩就会含有约一万吨铀。海水中铀的浓度相当低,每吨海水平均只含3.3毫克铀,但由于海水总量极大,且从水中提取有其方便之处,所以目前不少国家,特别是那些缺少铀矿资源的国家,正在探索海水提铀的方法。 由于铀的化学性质很活泼,所以自然界不存在游离的金属铀,它总是以化合状态存在着。已知的铀矿物有一百七十多种,但具有工业开采价值的铀矿只有二、三十种,其中最重要的有沥青铀矿(主要成分为八氧化三铀)、品质铀矿(二氧化铀)、铀石和铀黑等。很多的铀矿物都呈黄色、绿色或黄绿色。有些铀矿物在紫外线下能发出强烈的荧光,我们还记得,正是铀矿物(铀化合物)这种发荧光的特性,才导致了放射性现象的发现。 虽然铀元素的分布相当广,但铀矿床的分布却很有限。国外铀资源主要分布在美国、加拿大、南非、西南非、澳大利亚等国家和地区。据估计,国外已探明的工业储量到1972年已超过一百万吨。随着勘探活动的广泛和深入,铀储量今后肯定还会增加。我国铀矿资源也十分丰富。 铀矿是怎样寻找的呢?铀及其一系列衰变子体的放射性是存在铀的最好标志。人的肉眼虽然看不见放射性,但是借助于专门的仪器却可以方便地把它探测出来。因此,铀矿资源的普查和勘探几乎都利用了铀具有放射性这一特点:若发现某个地区岩石、土壤、水、甚至植物内放射性特别强,就说明那个地区可能有铀矿存在。 铀矿的开采与其它金属矿床的开采并无多大的区别。但由于铀矿石的品位一般很低(约千分之一),而用作核燃料的最终产品的纯度又要求很高(金属铀的纯度要求在99.9%以上,杂质增多,会吸收中子而妨碍链式反应的进行),所以铀的冶炼不象普通金属那样简单,而首先要采用“水冶工艺”,把矿石加工成含铀60~70%的化学浓缩物(重铀酸铵),再作进一步的加工精制。 铀水冶得到的化学浓缩物(重铀酸氨)呈黄色,俗称黄饼子,但它仍含有大量的杂质,不能直接应用,需要作进一步的纯化。为此先用硝酸将重铀酸铵溶解,得到硝酸铀酰溶液。再用溶剂萃取法纯化(一般用磷酸三丁酯作萃取剂),以达到所要求的纯度标准。 纯化后的硝酸铀酰溶液需经加热脱硝,转变成三氧化铀,再还原成二氧化铀。二氧化铀是一种棕黑色粉末,很纯的二氧化铀本身就可以用作反应堆的核燃料。 为制取金属铀,需要先将二氧化铀与无水氟化氢反应,得到四氟化铀;最后用金属钙(或镁)还原四氟化铀,即得到最终产品金属铀。如欲制取六氟化铀以进行铀同位素分离,则可用氟气与四氟化铀反应。 至此,能作核燃料使用的金属铀和二氧化铀都生产出来了,只要按要求制成一定尺寸和形状的燃料棒或燃料块(即燃料元件),就可以投入反应堆使用了。但是对于铀处理工艺来说,这还只是一半。 我们知道,核燃料铀在反应堆中虽然要比化学燃料煤在锅炉中使用的时间长得多,但是用过一段时间以后,总还是要把用过的核燃料从反应堆中卸出来,再换上一批新的核燃料。从反应维中卸出来的核燃料一般叫辐照燃料或“废燃料”。烧剩下的煤渣一般都丢弃不要了,可这种不能再使用的废燃料却还大有用处呢! 废燃料之所以要从反应堆中卸出来,并不是因为里面的裂变物质(铀235)已全部耗尽,而是因为能大量吸收中子的裂变产物积累得太多,致使链式反应不能正常进行了。所以,废燃料虽“废”,但里面仍有相当可观的裂变物质没有用掉,这是不能丢弃的,必须加以回收。而且在反应堆中,铀238吸收中子,生成钚239。钚239是原子弹的重要装药,它就含在废燃料中,这就使得用过的废燃料甚至比没有用过的燃料还宝贵。除此而外,反应堆运行期间,还生成其它很多种有用的放射性同位素,它们 蘑菇云
也含在废燃料中,也需要加以回收。 从原理上讲,废燃料的处理与天然铀的生产并无多大差别。一般先把废燃料溶解,再用溶剂萃取法把铀、钚和裂变产物相互分开,然后进行适当的纯化和转化。但实际上,废燃料的处理是十分困难的。世界上很多国家都能生产天然铀,很多国家都有反应堆,但是能处理废燃料的国家却并不多。 废燃料的处理有三个特点:一是废燃料具有极强的放射性,它们的处理必须有严密的防护设施,并实行远距离操作;二是废燃料中钚含量很低而钚又极贵重,所以要求处理过程的分离系数和回收率都很高;三是钚能发生链式反应,因此必须采取严格的措施,防止临界事故的发生。目前,废燃料的处理大都采用自动化程度很高的磷酸三丁酯萃取流程。 我们看到,在铀处理的工艺链中,相对于反应堆而言,铀水冶工艺在反应堆之前进行,所以通常叫做前处理,废燃料处理在反应堆之后进行,所以通常叫做后处理。而从铀矿石加工开始的整个工艺过程,包括铀同位素分离以及核燃料在反应堆中使用在内,一般总称为核燃料循环。 从以上极为简单的介绍就可以看出,铀和钚确是得之不易的。原子能工业犹如一条长长的巨龙,要最重的天然元素铀做出轰轰烈烈的事业,得经过多少次加工和处理、分析和测量、计算和核对啊!原子能工业又犹如一座高高的金字塔,要制造一颗原子弹,就要使用一、二十公斤铀235或钚239;要生产一、二十公斤铀235或钚239,就要消耗十来吨天然铀;要生产十来吨天然铀就要加工近万吨铀矿石。我们赞赏核电站的雄姿,惊叹原子弹的威力,可千万不能忽视支撑这座金字塔塔尖的无数块砖石啊!
Ⅶ 我国核电站运行所需的核燃料是怎么来的这是吗有谁能说一说它的具体过程
全国有很多地方有铀矿呀,你可以查一下文献,都是可以找到的。这是人所共知的事,不是什么机密。但提取和加工矿石的工厂和工艺就是机密了。
Ⅷ 为什么核辐射对人有影响,这些核燃料是怎么采集起来的
核辐射主要是α、β、γ三种射线: α射线是氦核,β射线是电子,这两种射线由于穿透力小,影响距离比较近,只要辐射源不进入体内,影响不会太大。 γ射线的穿透力很强,是一种波长很短的电磁波。电磁波是很常见的辐射,对人体的影响主要由功率(与场强有关)和频率决定。通讯用的无线电波是频率较低的电磁波,如果按照频率从低到高(波长从长到短)按次序排列,电磁波可以分为:长波、中波、短波、超短波、微波、远红外线、红外线、可见光、紫外线、X射线、γ射线。以可见光为界,频率低于(波长长于)可见光的电磁波对人体产生的主要是热效应,频率高于可见光的射线对人体主要产生化学效应。 铀是一种常见的化学元素,陆地上和海洋中的每个地方都存在着铀。它就跟锡一样常见,储量比金高500倍。大部分种类的岩石和土壤都包含着铀,尽管浓度极低。现在,比较经济的铀储藏地的铀浓度至少为0.1%。以现在的花费速度来算,地球上可被提取的铀还可用50年。将铀的价格提高一倍对核电站的运行成本不会有什么影响,但可以使地球上可被提取的铀能持续使用几百年。在这种情况下,将铀的价格提高一倍会将核电站的运行成本提高5%。但是,如果将天然气的价格提高一倍,那么天然气的供应成本会提高60%。将煤的价格提高一倍会将煤的供应成本提高30%。 铀的提纯会产生出许多吨贫铀 (DU),它包含了铀-238和大多数铀-235。铀-238有几种商业上的应用,比如说飞机制造,辐射防护,制造子弹和装甲,因为它具有比铅更高的的密度。有人担心那些过度接触铀-238的人会得辐射病,这些人包括坦克乘员和在有大量贫铀存在的地区居住的居民。 现在的轻水反应堆远远没有能充分利用核燃料,这造成了浪费。更有效的反应堆或再处理技术将会减少核废料的数量,并且能更好地利用资源。 与现在使用铀-235(占天然铀的0.7%)的轻水反应堆不同的是,快速增殖反应堆使用的是铀-238(占天然铀的99.3%)。铀-238估计可供核电站使用50亿年。增殖技术已经被应用在了几个反应堆中。至2005年12月,唯一正在向外界提供能量的增殖反应堆是位于俄罗斯别洛雅尔斯克的BN-600。(BN-600的输出功率为600兆瓦,俄罗斯还计划在别洛雅尔斯克核电站建造另一个反应堆,BN-800)还有,日本的“文殊”反应堆也在准备重新起用(它从1995年起就被关闭了),中国和印度也在计划建造增殖反应堆。 由钍转化而得的铀-233也可以用做核裂变燃料。地球上钍的储量为铀的储量的三倍,而且理论上所有这些钍都可被用来进行增殖,这使钍的潜在市场大于铀的市场。与用铀-238来制造钚不同的是,用钍来制造铀-233不需要快速增殖反应堆,它在常规增殖反应堆中的表现已经很令人满意了。 计划中的核聚变反应堆使用的核燃料是氘,一种氢的同位素,现在的设计也会用到锂。以现在人类消耗能量的速度来看,地球上可开采的锂还可以用3000年,海洋中的锂可用6000万年,如果核聚变反应堆只消耗氘的话,它们可以工作1500亿年。相比之下,太阳只剩下了50亿年的寿命。
希望采纳
Ⅸ 我国核电站所用的核燃料是什么安全性如何
所有核电站反应堆里装的核燃料都是低浓度铀-235(丰度2%~5%),浓度极低,任何情况下都绝对不可能发生原子弹那样的核爆炸。核电站事故一般都是放射性物质的意外扩散,核电站的安全性取决于核电站的设计建造水平和运行规范程度,与核燃料无关。核电站目前有一、二、三代之分,安全性越来越高,切尔诺贝利核电站和日本福岛核电站都是二代早期设计标准,尤其切尔诺贝利核电站设计安全系数很低,再加上人为操作严重违规,最终造成严重后果。福岛是落后的设计标准再碰上千年一遇的9级大地震和海啸。我国的核电站都是较新的二代或三代,安全标准要好于早期产品,选址也基本不在地震带,只要不是人为破坏,不大容易出现重大核事故。
Ⅹ 从自然界开采核燃料的方法是怎样的是从哪里开采出来的
从山里开采铀矿,然后提炼。