异星工厂铀235怎么开采
❶ 铀是如何提取的
最重的天然元素铀已经成为新能源的主角,那么铀又是怎样提炼出来的呢? 在居里夫妇发现镭以后,由于镭具有治疗癌症的特殊功效,镭的需要量不断增加,因此许多国家开始从沥青铀矿中提炼镭,而提炼过镭的含铀矿渣就堆在一边,成了“废料”。 然而,铀核裂变现象发现后,铀变成了最重要的元素之一。这些“废料”也就成了“宝贝”。从此,铀的开采工业大大地发展起来,并迅速地建立起了独立完整的原子能工业体系。 铀是一种带有银白色光泽的金属,比铜稍软,具有很好的延展性,很纯的铀能拉成直径0.35毫米的细丝或展成厚度0.1毫米的薄箔。铀的比重很大,与黄金差不多,每立方厘米约重19克,像接力棒那样的一根铀棒,竟有十来公斤重。 铀的化学性质很活泼,易与大多数非金属元素发生反应。块状的金属铀暴露在空气中时,表面被氧化层覆盖而失去光泽。粉末状铀于室温下,在空气中,甚至在水中就会自燃。美国用贫化铀制造的一种高效的燃烧穿甲弹—“贫铀弹”,能烧穿30厘米厚的装甲钢板,“贫铀弹”利用的就是铀极重而又易燃这两种性质。 铀元素在自然界的分布相当广泛,地壳中铀的平均含量约为百万分之2.5,即平均每吨地壳物质中约含2.5克铀,这比钨、汞、金、银等元素的含量还高。铀在各种岩石中的含量很不均匀。例如在花岗岩中的含量就要高些,平均每吨含3.5克铀。依此推算,一立方公里的花岗岩就会含有约一万吨铀。海水中铀的浓度相当低,每吨海水平均只含3.3毫克铀,但由于海水总量极大,且从水中提取有其方便之处,所以目前不少国家,特别是那些缺少铀矿资源的国家,正在探索海水提铀的方法。 由于铀的化学性质很活泼,所以自然界不存在游离的金属铀,它总是以化合状态存在着。已知的铀矿物有一百七十多种,但具有工业开采价值的铀矿只有二、三十种,其中最重要的有沥青铀矿(主要成分为八氧化三铀)、品质铀矿(二氧化铀)、铀石和铀黑等。很多的铀矿物都呈黄色、绿色或黄绿色。有些铀矿物在紫外线下能发出强烈的荧光,我们还记得,正是铀矿物(铀化合物)这种发荧光的特性,才导致了放射性现象的发现。 虽然铀元素的分布相当广,但铀矿床的分布却很有限。国外铀资源主要分布在美国、加拿大、南非、西南非、澳大利亚等国家和地区。据估计,国外已探明的工业储量到1972年已超过一百万吨。随着勘探活动的广泛和深入,铀储量今后肯定还会增加。我国铀矿资源也十分丰富。 铀矿是怎样寻找的呢?铀及其一系列衰变子体的放射性是存在铀的最好标志。人的肉眼虽然看不见放射性,但是借助于专门的仪器却可以方便地把它探测出来。因此,铀矿资源的普查和勘探几乎都利用了铀具有放射性这一特点:若发现某个地区岩石、土壤、水、甚至植物内放射性特别强,就说明那个地区可能有铀矿存在。 铀矿的开采与其它金属矿床的开采并无多大的区别。但由于铀矿石的品位一般很低(约千分之一),而用作核燃料的最终产品的纯度又要求很高(金属铀的纯度要求在99.9%以上,杂质增多,会吸收中子而妨碍链式反应的进行),所以铀的冶炼不象普通金属那样简单,而首先要采用“水冶工艺”,把矿石加工成含铀60~70%的化学浓缩物(重铀酸铵),再作进一步的加工精制。 铀水冶得到的化学浓缩物(重铀酸氨)呈黄色,俗称黄饼子,但它仍含有大量的杂质,不能直接应用,需要作进一步的纯化。为此先用硝酸将重铀酸铵溶解,得到硝酸铀酰溶液。再用溶剂萃取法纯化(一般用磷酸三丁酯作萃取剂),以达到所要求的纯度标准。 纯化后的硝酸铀酰溶液需经加热脱硝,转变成三氧化铀,再还原成二氧化铀。二氧化铀是一种棕黑色粉末,很纯的二氧化铀本身就可以用作反应堆的核燃料。 为制取金属铀,需要先将二氧化铀与无水氟化氢反应,得到四氟化铀;最后用金属钙(或镁)还原四氟化铀,即得到最终产品金属铀。如欲制取六氟化铀以进行铀同位素分离,则可用氟气与四氟化铀反应。 至此,能作核燃料使用的金属铀和二氧化铀都生产出来了,只要按要求制成一定尺寸和形状的燃料棒或燃料块(即燃料元件),就可以投入反应堆使用了。但是对于铀处理工艺来说,这还只是一半。 我们知道,核燃料铀在反应堆中虽然要比化学燃料煤在锅炉中使用的时间长得多,但是用过一段时间以后,总还是要把用过的核燃料从反应堆中卸出来,再换上一批新的核燃料。从反应维中卸出来的核燃料一般叫辐照燃料或“废燃料”。烧剩下的煤渣一般都丢弃不要了,可这种不能再使用的废燃料却还大有用处呢! 废燃料之所以要从反应堆中卸出来,并不是因为里面的裂变物质(铀235)已全部耗尽,而是因为能大量吸收中子的裂变产物积累得太多,致使链式反应不能正常进行了。所以,废燃料虽“废”,但里面仍有相当可观的裂变物质没有用掉,这是不能丢弃的,必须加以回收。而且在反应堆中,铀238吸收中子,生成钚239。钚239是原子弹的重要装药,它就含在废燃料中,这就使得用过的废燃料甚至比没有用过的燃料还宝贵。除此而外,反应堆运行期间,还生成其它很多种有用的放射性同位素,它们 蘑菇云
也含在废燃料中,也需要加以回收。 从原理上讲,废燃料的处理与天然铀的生产并无多大差别。一般先把废燃料溶解,再用溶剂萃取法把铀、钚和裂变产物相互分开,然后进行适当的纯化和转化。但实际上,废燃料的处理是十分困难的。世界上很多国家都能生产天然铀,很多国家都有反应堆,但是能处理废燃料的国家却并不多。 废燃料的处理有三个特点:一是废燃料具有极强的放射性,它们的处理必须有严密的防护设施,并实行远距离操作;二是废燃料中钚含量很低而钚又极贵重,所以要求处理过程的分离系数和回收率都很高;三是钚能发生链式反应,因此必须采取严格的措施,防止临界事故的发生。目前,废燃料的处理大都采用自动化程度很高的磷酸三丁酯萃取流程。 我们看到,在铀处理的工艺链中,相对于反应堆而言,铀水冶工艺在反应堆之前进行,所以通常叫做前处理,废燃料处理在反应堆之后进行,所以通常叫做后处理。而从铀矿石加工开始的整个工艺过程,包括铀同位素分离以及核燃料在反应堆中使用在内,一般总称为核燃料循环。 从以上极为简单的介绍就可以看出,铀和钚确是得之不易的。原子能工业犹如一条长长的巨龙,要最重的天然元素铀做出轰轰烈烈的事业,得经过多少次加工和处理、分析和测量、计算和核对啊!原子能工业又犹如一座高高的金字塔,要制造一颗原子弹,就要使用一、二十公斤铀235或钚239;要生产一、二十公斤铀235或钚239,就要消耗十来吨天然铀;要生产十来吨天然铀就要加工近万吨铀矿石。我们赞赏核电站的雄姿,惊叹原子弹的威力,可千万不能忽视支撑这座金字塔塔尖的无数块砖石啊!
❷ 使用什么办法可以得到铀-235(或铀-238)
两个楼上的在搞什么!铀可以是天然铀也可以从矿物海水中提取,而要浓缩铀就要有离心机
❸ 铀235原子要怎样获得
铀235原子约比铀238原子轻1.3%,所以,如果让这两种原子处于气体状态,铀235原子就会比铀238原子运动得稍快一点,这两种原子就可稍稍得到分离。气体扩散法所依据的,就是铀235原子和铀238原子之间这一微小的质量差异。
这种方法首先要求将铀转变为气体化合物。到目前为止,六氟化铀是唯一合适的一种气体化合物。这种化合物在常温常压下是固体,但很容易挥发,在56.4摄氏度即升华成气体。铀235的六氟化铀分子与铀238的六氟化铀分子相比,两者质量相差不到百分之一,但事实证明,这个差异已足以使它们分离了。
六氟化铀气体在加压下被迫通过一个多孔隔膜。含有铀235的分子通过多孔隔膜稍快一点,所以每通过一个多孔隔膜,油235的含量就会稍增加一点,但是增加的程度是十分微小的。因此,要获得几乎纯的铀235,就需要让六氟化铀气体数千次地通过多孔隔膜。
气体扩散法投资很高,耗电量很大,虽然如此,这种方法目前仍是实现工业应用的唯一方法。为了寻找更好的铀同位素分离方法,许多国家做了大量的研究工作,已取得了一定的成绩。例如目前离心法已向工业生产过渡,喷嘴法等已处于中间工厂试验阶段,而新兴的冠醚化学分离法和激光分离法等则更有吸引力。可以相信,今后一定会有更多更好的分离铀同位素的方法付诸实用,气体扩散法的垄断地位必将结束。
❹ 异星工厂的铀用什么开采
铀矿用电动矿机就能开采,但是需要有硫酸,先要连上硫酸管道,然后就内跟其他的矿一样了。容不过后续加工不是钢炉电炉,而是离心机。再之后用组装机弄成核燃料棒就可以产生热量了,再之后加热水做成高温蒸汽,就可以用来发电了。
❺ 怎样提取铀235
运用“气体扩散法”提取铀235。
为了获得高加浓度的铀235,科学家们曾用多种方法来攻此难关,最后“气体扩散法”终于获得了成功。
铀235原子约比铀238原子轻1.3%,所以,如果让这两种原子处于气体状态,铀235原子就会比铀238原子运动得稍快一点,这两种原子就可稍稍得到分离。
气体扩散法所依据的,就是铀235原子和铀238原子之间这一微小的质量差异这种方法首先要求将铀转变为气体化合物。到目前为止,六氟化铀是唯一合适的一种气体化合物。
这种化合物在常温常压下是固体,但很容易挥发,在56.4℃即升华成气体。铀235的六氟化铀分子与铀238的六氟化铀分子相比,两者质量相差不到百分之一,但事实证明,这个差异已足以使它们分离了六氟化铀气体在加压下被迫通过一个多孔隔膜。
含有铀235的分子通过多孔隔膜稍快一点,所以每通过一个多孔隔膜,铀235的含量就会稍增加一点,但是增加的程度是十分微小的。因此,要获得几乎纯的铀235,就需要让六氟化铀气体数千次地通过多孔隔膜。
气体扩散法投资很高,耗电量很大,虽然如此,这种方法仍是实现工业应用的唯一方法。为了寻找更好的铀同位素分离方法,许多国家做了大量的研究工作,已取得了一定的成绩。
(5)异星工厂铀235怎么开采扩展阅读:
铀-235是制造核武器的主要材料之一。但在天然矿石中铀的3种同位素共生,其中铀-235的含量非常低,只有约0.7%。只有把其他同位素分离出去,不断提高铀235的浓度,才能用于制造核武器。这一加工过程称为铀浓缩。
根据国际原子能机构的定义,丰度为3%的铀-235为核电站发电用低浓缩铀,浓度大于80%的铀为高浓缩铀,其中丰度大于90%的称为武器级高浓缩铀,主要用于制造核武器。获得1公斤武器级铀-235需要200吨铀矿石。
国际上通用的铀浓缩方法有离心法、气体扩散法和激光法,而气体离心分离机则是提炼浓缩铀通常采用的气体离心法的关键设备。
这是一个庞大的系统,通过每分钟2万转以上的高速离心机,其他同位素可从天然铀矿石中分离出去,剩余的铀235的浓度可达到95%以上。美国当年在日本广岛投放的原子弹是通过劳伦斯法分离制成的。
❻ 如何从铀238中提炼235
为了获得高加浓度的铀235,早期,科学家们曾用多种方法来攻此难关。最后“气体扩散法”终于获得了成功。
我们知道,铀235原子约比铀238原子轻1.3%,所以,如果让这两种原子处于气体状态,铀235原子就会比铀238原子运动得稍快一点,这两种原子就可稍稍得到分离。气体扩散法所依据的,就是铀235原子和铀238原子之间这一微小的质量差异这种方法首先要求将铀转变为气体化合物。到目前为止,六氮化铀是唯一合适的一种气体化合物。这种化合物在常温常压下是固体,但很容易挥发,在56.4℃即升华成气体。铀235的六氟化铀分子与铀238的六氟化铀分子相比,两者质量相差不到百分之一,但事实证明,这个差异已足以使它们分离了六氟化铀气体在加压下被迫通过一个多孔隔膜。含有铀235的分子通过多孔隔膜稍快一点,所以每通过一个多孔隔膜,油235的含量就会稍增加一点,但是增加的程度是十分微小的。因此,要获得几乎纯的铀235,就需要让六氟化铀气体数千次地通过多孔隔膜
气体扩散法投资很高,耗电量很大,虽然如此,这种方法目前仍是实现工业应用的唯一方法。为了寻找更好的铀同位素分离方法,许多国家做了大量的研究工作,已取得了一定的成绩。例如目前离心法已向工业生产过渡,喷嘴法等已处于中间工厂试验阶段,而新兴的冠醚化学分离法和激光分离法等则更有吸引力。可以相信,今后一定会有更多更好的分离铀同位素的方法付诸实用,气体扩散法的垄断地位必将结束。
❼ 铀-235需要通过什么从铀原矿中获取 通过什么办法可以有效的控制链式反应 核裂变产生的核能怎么
铀矿有抄非常多种,可以袭网络一下,铀矿一般含有235和238两种同位素235量很少,所以一般用离心机将235提取,离心机的话平常人是没办法制成的,耗电量也惊人,控制链式反应可以参照网络搜索核电站,核裂变会生成大量热,所以网络搜索核电站也有完整的解答,获取中子也同样搜索核电站,核能转化为光能可以,核能转化为热能再转化为水的内能,内能转化为动能,动能带动发电机,发电机让灯泡发光。
❽ 铀235怎样提纯
目前国际上通用的铀浓缩方法有离心法、气体扩散法和激光法,而气体离心分离机则是提炼浓缩铀通常采用的气体离心法的关键设备。它是一个庞大的系统,通过每秒2万转以上的高速离心机,其他同位素可从天然铀矿石中分离出去,剩余的铀235的浓度可达到95%以上。
为了获得高加浓度的铀235,早期,科学家们曾用多种方法来攻此难关。最后“气体扩散法”终于获得了成功。气体扩散法所依据的,就是铀235原子和铀238原子之间这一微小的质量差异这种方法首先要求将铀转变为气体化合物。到目前为止,六氮化铀是唯一合适的一种气体化合物。气体扩散法投资很高,耗电量很大,虽然如此,这种方法目前仍是实现工业应用的唯一方法。为了寻找更好的铀同位素分离方法,许多国家做了大量的研究工作,已取得了一定的成绩。例如目前离心法已向工业生产过渡,喷嘴法等已处于中间工厂试验阶段,而新兴的冠醚化学分离法和激光分离法等则更有吸引力。
❾ 铀是放射性物质,那么铀矿开采时,矿工是如何防护的
首先,在做防护之前要了解铀是怎样的放射性物质。铀具有辐射性,辐射带来的影响主要是加速生物体内细胞的分裂,裂变的细胞会不断增加,这样带来的问题就是对人体的危害。当细胞分裂到某种程度,突破极限之后,便会在人体产生一种不良的症状,也就是癌。简单来说,铀的辐射性是可能使人体致癌。但是,在半衰前期的铀石对人体的辐射还不及手机的辐射来的强,也就是说铀原石本身对人体的伤害其实并不大,导致人体直接产生不良反应的另有其他。
最后,根据国家对探测人员的要求,工作的时候,一定要着完备的工作服。因为开矿这个职业就具有一定的危险性,对于在开采过程中究竟会产生怎样的有害气体和物质,都是未知的,那么为了保证这些工作人员的安全,做好防护工作就是开采前最重要的步骤。根据国家的规定,进矿开采的所有人员都需要穿戴完备的工作服。
❿ 如何提纯浓缩铀-235
提纯浓缩铀-235含量的技术比较复杂, 现时用来提纯铀-235的主要方法有气体扩散法离子交换法、气体离心法、蒸馏法、电解法、电磁法、电流法等,其中以气体扩散法最成熟。 气体扩散法——这是商业开发的第一个浓缩方法。该工艺依靠不同质量的铀同位素在转化为气态时运动速率的差异。在每一个气体扩散级,当高压六氟化铀气体透过在级联中顺序安装的多孔镍膜时,其铀-235轻分子气体比铀-238分子的气体更快地通过多孔膜壁。这种泵送过程耗电量很大。已通过膜管的气体随后被泵送到下一级,而留在膜管中的气体则返回到较低级进行再循环。在每一级中,铀-235/铀-238浓度比仅略有增加。浓缩到反应堆级的铀-235丰度需要1000级以上。 气体离心法——在这类工艺中,六氟化铀气体被压缩通过一系列高速旋转的圆筒,或离心机。铀-238同位素重分子气体比铀-235轻分子气体更容易在圆筒的近壁处得到富集。在近轴处富集的气体被导出,并输送到另一台离心机进一步分离。随着气体穿过一系列离心机,其铀-235同位素分子被逐渐富集。与气体扩散法相比,气体离心法所需的电能要小很多,因此该法已被大多数新浓缩厂所采用。 气体动力学分离法——所谓贝克尔技术是将六氟化铀气体与氢或氦的混合气体经过压缩高速通过一个喷嘴,然后穿过一个曲面,这样便形成了可以从铀-238中分离铀-235同位素的离心力。气体动力学分离法为实现浓缩比度所需的级联虽然比气体扩散法要少,但该法仍需要大量电能,因此一般被认为在经济上不具竞争力。在一个与贝克尔法明显不同的气体动力学工艺中,六氟化铀与氢的混合气体在一个固定壁离心机中的涡流板上进行离心旋转。浓缩流和贫化流分别从布置上有些类似于转筒式离心机的管式离心机的两端流出。南非一个能力为25万分离功单位的铀-235最高丰度为5%的工业规模的气体动力学分离厂已运行了近10年,但也由于耗电过大,而在1995年关闭。 激光浓缩法——激光浓缩技术包括3级工艺:激发、电离和分离。有2种技术能够实现这种浓缩,即“原子激光法”和“分子激光法”。原子激光法是将金属铀蒸发,然后以一定的波长应用激光束将铀-235原子激发到一个特定的激发态或电离态,但不能激发或电离铀-238原子。然后,电场对通向收集板的铀-235原子进行扫描。分子激光法也是依靠铀同位素在吸收光谱上存在的差异,并首先用红外线激光照射六氟化铀气体分子。铀-235原子吸收这种光谱,从而导致原子能态的提高。然后再利用紫外线激光器分解这些分子,并分离出铀-235。该法似乎有可能生产出非常纯的铀-235和铀-238,但总体生产率和复合率仍有待证明。在此应当指出的是,分子激光法只能用于浓缩六氟化铀,但不适于“净化”高燃耗金属钚,而既能浓缩金属铀也能浓缩金属钚的原子激光法原则上也能“净化”高燃耗金属钚。因此,分子激光法比原子激光法在防扩散方面会更有利一些。 同位素电磁分离法——同位素电磁分离浓缩工艺是基于带电原子在磁场作圆周运动时其质量不同的离子由于旋转半径不同而被分离的方法。通过形成低能离子的强电流束并使这些低能离子在穿过巨大的电磁体时所产生的磁场来实现同位素电磁分离。轻同位素由于其圆周运动的半径与重同位素不同而被分离出来。这是在20世纪40年代初期使用的一项老技术。正如伊拉克在20世纪80年代曾尝试的那样,该技术与当代电子学结合能够用于生产武器级材料。 化学分离法——这种浓缩形式开拓了这样的工艺,即这些同位素离子由于其质量不同,它们将以不同的速率穿过化学“膜”。有2种方法可以实现这种分离:一是由法国开发的溶剂萃取法,二是日本采用的离子交换法。法国的工艺是将萃取塔中2种不互溶的液体混和,由此产生类似于摇晃1瓶油水混合液的结果。日本的离子交换工艺则需要使用一种水溶液和一种精细粉状树脂来实现树脂对溶液的缓慢过滤。 等离子体分离法——在该法中,利用离子回旋共振原理有选择性地激发铀-235和铀-238离子中等离子体铀-235同位素的能量。当等离子体通过一个由密式分隔的平行板组成的收集器时,具有大轨道的铀-235离子会更多地沉积在平行板上,而其余的铀-235等离子体贫化离子则积聚在收集器的端板上。已知拥有实际的等离子体实验计划的国家只有美国和法国。美国已于1982年放弃了这项开发计划。法国虽然在1990年前后停止了有关项目,但它目前仍将该项目用于稳定同位素分离