夏季机械设备高故障
① 机械故障的类型类型有哪些
所谓机械故障,就是指机械系统(零件、组件、部件或整台设备乃至一系列的设备组内合)已偏离其容设备状态而丧失部分或全部功能的现象。
如某些零件或部件损坏,致使工作能力丧失;发动机功率降低;传动系统失去平衡和噪声增大;工作机构的工作能力下降;燃料和润滑油的消耗增加等,当其超出了规定的指标时,均属于机械故障。
机械的故障表现在它的结构上主要是它的零件损坏和零件之间相互关第的破坏。如零件的断裂、变形、配合件的间隙增大或过盈可以丧失,固定和紧固装置的松动和失效等。
② 先车间机械设备故障率高,钳工劳动力大,对此你有什么好办法
应当分析设备故障率高的原因,找出原因了,在来做具体的应对措施。
③ 常见的机械故障有哪些
由一般工厂会计步骤确定的维护成本在多数工厂中通常构成总运营成本的大部分。在美国,传统的维护成本(即人力和材料)在过去10年内急剧上升。在1981 年,美国的工厂花费在维护其关键装置系统上的成本超过了6000 亿美元。在1991 年,这种成本已经升至8000 多亿美元,而在2000年更是破记录地达到12000 亿美元。这些数据表明,这些成本的三分之一到二分之一由于采用无效的维护管理方法而被浪费掉。美国工业界再也无法容忍这种另人难以置信的无效率,它们希望参与世界市场上的竞争。有关其他国家的这方面的数据还比较少,但我们相信,情况基本上是相同的。 这种无效使用维护支出的主要原因是,缺乏对何时需要以及需要何种维护以维护、修理或更换工厂或设施内的关键机器、设备和系统进行量化的实际数据。通常,维护机构不对设备性能、执行的维护任务、故障历史或其他数据进行跟踪,而这些数据可以(并且应该)用于对将会防止过早发生故障、延长关键工厂资产的使用寿命并降低其生命循环成本的任务进行计划和安排。相反,在许多情况下,维护计划安排仍然由设备故障情况以及维护人员的直觉来决定,维护人员可以任意决定日常维护的类型和频率。例如,多数采用热成像检查方法的设施每隔半年或6 个月进行一次检查。这是一种没有任何实际数据根据的纯任意的决定。 红外监视和振动监视等基于微处理器的仪器可被用来对关键工厂设备、机器和系统的工作状况进行监视。从这些仪器获得的信息提供了有效管理维护操作的方法。至少,它们可以降低或消除不必要的维修、防止灾难性的机器故障并降低无效的维护操作对制造及生产工厂利润的不利影响。当其功能被充分利用时,这些仪器就提供了将总体工厂性能、机器有用寿命以及设施及其资产的寿命循环成本实现最佳化的方法。基于计算机的维护管理系统可提供历史数据以及使用从预知性维护技术(如红外监视和振动监视)得到的数据的方法。 工业和加工工厂通常使用两种类型维护管理,即“运转至出现故障”和“预防性维护”。 运转至出现故障管理 运转至出现故障管理的思想简单明了。设备出现故障时对它进行维修。这种“不出故障就不维修”的机器装置维护方法是自第一个制造工厂建立以来构成维护运行的一个主要部分,听起来倒也合理。采用运转至出现故障管理的工厂在机器或系统出现故障之前不会在维护上花费任何资金。运转至出现故障是一种反应性的管理技术,它会在采取任何维护行动之前等待机器或设备出现故障。确切地说,这是一种“无维护”管理方法。它也是最为昂贵的维护管理方法。 但是应该说,极少有工厂采用真正的运转至出现故障的管理方法。在几乎所有情况下,工厂将执行基本的预防性维护任务,即润滑、机器调整和其他调整,甚至在一个运转至出现故障的管理环境中也是如此。但是在这种管理方式下,在设备出现故障之前,机器和其他工厂设备不会被改制或者进行大的维修。 与这种维护管理相关的主要费用是: 高备件库存成本; 高超时劳动力成本; 机器停机时间长,以及生产能力低。 因为没有对维护要求进行预期,采用运转至出现故障管理的工厂必须能够对工厂内所有可能发生的故障做出反应。这种反应性管理方法迫使管理部门要维持大量的备件库存,它们包括备用机器,或者至少包括用于工厂中所有关键设备的所有主要部件。一种替代方法是,工厂可以依赖于设备厂商迅速提供所有所需备件。即使可采用后面一种方法,快速交付的额外费用也会大大增加维修备件的成本并以及纠正机器故障所需的停机时间。为了将由意外机器故障造成的对生产的影响降到最低程度,维护人员还必须能够立即对所有机器故障做出反应。 这种这种反应性维护管理的最终结果是较高的维护成本和较低的加工机器利用率。对维护成本的分析表明,在反应性或运转至出现故障管理模式下进行维修的成本是有计划或预防性维护模式下进行的相同维护的成本的 3 倍。对维修进行计划安排可使工厂将维修时间和有关的劳动力成本降到最低。它还提供了一种可减少快速交付和生产下降等负面影响的方法。 预防性维护对于预防性维护具有多种定义,但所有的管理计划都是按照时间来安排的。换言之,维护任务是按照机器运行的时间或小时数进行的,它们基于特定类型工厂设备的统计数据或历史数据。一台新机器在最初几个小时或几周运转时间内出现故障的可能性非常高,这些故障通常是由制造或安装问题引起。过了这段初始时期之后,在较长时间内出现故障的可能性相对较低。在此正常运转期之后,出现故障的可能性会随着机器运转时间或小时数的增加而急剧增加。在预防性维护管理中,机器检查、润滑、维修或改制都基于平均无故障时间统计数据进行计划安排。 预防性维护的实际执行变化很大。一些计划步骤非常有限,仅包含润滑和较小的调整。更多的综合预防性维护计划将对工厂中所有机器的维修、润滑、调整和机器改制等工作进行计划安排。所有这些预防性维护计划的共同标志是它们都具有计划安排指南。所有预防性维护管理计划都假设,机器状况将在通常适用于该类特定机器的统计时间范围内恶化。例如,单级、卧式外壳分离式离心泵通常运转18 个月后就要更换其磨损部件。使用预防性维护技术,在该泵运转17 个月后就要使其停止运转并进行改制。 这种方法的问题是,运转模式以及与系统或装置相关的变量会直接影响机器的正常工作寿命。对于用于输送水用于输送磨损性泥浆的泵来说,平均无故障时间 (MTBF) 是不同的。使用 MTBF 统计数据来安排维护的一般结果是要进行不必要的维修或发生灾难性的故障。在上例中,该泵在 17 个月之后可能就不需要进行改制。因此,用于进行维修的劳动力和材料就被浪费掉了。采用预防性维护的第二种选择甚至更为昂贵。如果泵在17 个月之前就出现故障,我们就会被迫采用运转至出现故障技术进行维修。对维护成本的分析显示,在反应性(故障后)模式下进行维修的成本通常是在计划安排基础上进行的相同维修的成本的3 倍。 预知性维护预知性维护是一种运转状况驱动的预防性维护程序。预知性维护不依赖于工业或工厂内平均寿命统计数据(即平均无故障时间)来计划安排维护活动,而是对运转状况、效率、热量分布和其他指标进行直接监视,以确定实际的平均无故障时间或将危害到工厂或设施内所有关键系统装置运转的效率损失。传统的基于时间的方法至多可为正常机器系列寿命跨度提供一种指南。在预防性或运转至出现故障计划中对维护或改制计划安排所做的最后决定必须要根据维护管理者的直觉和个人经验做出。 增加综合预知性维护计划可以并且将会提供关键设备运转状况的实际数据,包括效率、每个机器系列的实际机械状况以及每个过程系统的运转效率。预知性维护不依赖于工业或工厂内平均寿命统计数据(即平均无故障时间)来计划安排维护活动,而是对机械状况、系统效率和其他指标进行直接监视,以确定实际的平均无故障时间或工厂内每个机器系列和系统的效率损失。这种数据为维护管理层提供了有效计划和安排维护活动所需的实际数据。 预知性维护还具有更多的功效。它提供了提高制造和生产工厂的生产率、产品质量和总体效率的方法。预知性维护并不是在目前市场上作为预知性维护工具销售的振动监视、红外成像、润滑油分析或任何其他单个非破坏性测试技术。它是一种理念或者态度,简单地说,就是利用工厂设备和系统的实际运转状况来促使整个工厂装置运转最佳化。综合预知性维护管理计划使用大多数经济有效的工具(即热成像、振动监视、摩擦测量和其他非破坏性测试方法)的组合,以获得关键工厂系统的实际运转状况,并根据这种实际数据按需计划安排所有维护活动。 将预知性维护包含于一个综合性维护管理计划中,就可以实现工厂机器的最佳利用,并大大降低维护成本。这样做还会提高产品质量、生产效率和利润。 预知性维护计划可以将工厂内未经计划的所有电气和机械设备停机降到最低程度,并确保维修过的设备处于另人接受的状况。该计划还可在问题变得严重之前对它们加以识别。如果问题早期得到检测并进行维修,多数问题的严重性可降到最低程度。正常机械失效会以一个与其严重性成正比的速度恶化。如果问题得到早期检测,则在多数情况下可以避免进行大的维修。 获得的好处 有效运用预防性维护(包括预知性维护技术),将消除33% 至50% 维护支出中的大部分,这些支出被很多制造和生产厂商浪费掉了。根据美国的历史数据,由有效的预防性/预知性维护程序带来的初始节约涉及以下几个方面:1. 消除由设备或系统故障引起的未经计划的停机时间。通常,在前两年内成本可降低40% 至60%,在五年内可达到并维持90%的成本降低。2. 增加人员利用率。从统计上看,一个维护人员每个班次的的实际工作时间占24.5%或大约2 小时。通过识别在工厂资源中纠正缺陷所需的精确维修任务以及纠正问题所需的部件、工具和支持,预防性/预知性维护可显著增加有效实际工作时间。多数工厂已经能够达到并维持75% 至85% 的有效利用率。3. 提高生产能力。有效的预防性/预知性维护程序的主要好处是可提供工厂的产出或生产能力。短期(即1 到3 年)可持续生产能力的增加已经达到15% 和40%。已经取得长期75% 至80% 的提高。4. 降低维护支出。在一些情况下,实际维护支出会在实施有效的预防性/预知性维护计的第一年内会增加。这种支出的增加通常会达到10% 至15%,它是由使用预知性技术所发现的固有可靠性问题引起的。在消除这些问题之后,通常会取得35% 至60% 的人力和材料成本降低。5. 延长使用寿命。通常,工厂资源的使用寿命可延长33% 至60%。使用寿命的延长得益于在发生对设备的损坏之前就检测出初发问题或与最佳工作状况的偏离。进行较小的调整或维修而不让小的缺陷变为严重问题几乎可以无限延长设备的有效使用寿命。 总结 无效的管理方法以及对工厂资源缺乏即时、实际的了解会带来认为造成的高维护成本,在这方面,世界范围内几乎每个制造和生产设施都存在巨大的机遇。有效使用预防性/预知性维护技术提供了充分利用这种机遇的方法。
④ 机械设备排除故障的一般程序
1、停机,
2、报告相关人;
3、现场确认;
4、准备工具材料;
5、拆开取出损坏件;
6、恢复原功能;
7、检查;
8、试车;
9、恢复生产。
⑤ 如何处理机械设备故障
机械设备故障产生的原因
编辑本段
1.带传动出现故障原因是带作用在轴上的力较大,实现远距离传动,长时间工作皮带磨损,撕裂甚至拉断,对轴承的影响也较大.
2.齿轮传动故障原因主要有润滑不良工作环境造成齿磨损,点蚀.齿面啮合不到位造成齿根折断,塑性变形等等.太多了.
3.链传动,主要有润滑不良工作环境造成链条套筒磨损,太多了,你能问有针对性的问题吗
防范机械故障方法
编辑本段
如果能够正确地分析各种故障原因,采取有效的、针对性强的防范措施,是可以有效地防止机械故障,延长机械使用寿命的。
一、保证正常的工作载荷:
要注意不能在超过机械所能承受的最大负荷下进行工作,要在力所能及的情况下使用机械。要尽量保证机械负荷的均匀加减,使机械处于较为平缓的负荷变动,具体地说,就是要较为均匀地加减油门,防止发动机、工作装置动作的大起大落。
二、保证对机械的合理润滑:
正常合理的润滑是减少机械故障的有效措施之一。为此,要合理选用润滑剂,要根据机械的种类和应用结构的不同选用正常的润滑剂类别,根据机械的要求选用合适的质量等组,根据机械的要求选用合适的质量等级,根据机械的工作环境和不同的季节选择合适的润滑剂牌号。使用中,既不可使用低等级的润滑剂,也不可用其他种类的润滑剂代替,更不可使用劣质产品。
三、适时维修:
机械在使用过程中必然会出现各种各样的故障。在这些故障中,有些故障对机械设备的影响可能是很微小的,有些是比较严重的,甚至会造成机毁人亡的大事故。对出现的故障要及时进行处理,所谓适时进行处理就是要按照维修保养规程,对机械进行定期的保养与修理,各种等组的保养与修理必须按要求进行;在使用过程中要加强对工程机械的定期与不定期检查,及时了解机械的运行情况,对临时出现的故障,要及时进行处理,不要因故障小、不影响使用而延误维修时机,酿成更大故障。
四、采取正确的技术措施和组织管理措施:
作为工程机械的组织管理人员及操作人员要做到:注意保证机械在运输及保管过程中防止机械的损伤、变形、腐蚀等;严格机械的日常维护工作,使机械处于良好的技术状态;要教育操作人员正确的使用和操作各种工程机械,减少和防止人为失误引起的机械故障;要精心保养机械,要做到正确合理地进行定期与不定期保养,保持机械的清洁、干净,定期检查机械的技术状态,发现异常及时处理,对于松动和失调的零部件及时紧固和调整,对一些易损件进行预防性的更换等。
⑥ 机械设备故障产生的原因有哪些
机械设备故障产生的原因.
经验:
1.带传动出现故障原因是带作用在轴上的力较大,实现远距离传动,长时间工作皮带磨损,撕裂甚至拉断,对轴承的影响也较大.
2.齿轮传动故障原因主要有润滑不良工作环境造成齿磨损,点蚀.齿面啮合不到位造成齿根折断,塑性变形等等.太多了.
3.链传动,主要有润滑不良工作环境造成链条套筒磨损.
机械设备发生故障原因:1 外部原因 2 内部原因
1 外部原因主要有:使用环境原因,如粉尘、磨粒、温度、压力、腐蚀、气候等因素;设备负荷原因,如负荷超过设计能力、负荷不均、短时负荷值超过设计值等;安装调试问题,如安装调试不当或未达到设计要求等。未按要求维护操作设备,如润滑不良、密封问题、设备使用初期未按要求试车磨合、岗位工错误操作等;上次检修不当,如更换或修复的零件不合要求、装配问题等
2 内部原因主要有:机械本身设计存在问题 零件制造质量不过关等
如果能够正确地分析各种故障原因,采取有效的、针对性强的防范措施,是可以有效地防止机械故障,延长机械使用寿命的。
一、保证正常的工作载荷:
要注意不能在超过机械所能承受的最大负荷下进行工作,要在力所能及的情况下使用机械。要尽量保证机械负荷的均匀加减,使机械处于较为平缓的负荷变动,具体地说,就是要较为均匀地加减油门,防止发动机、工作装置动作的大起大落。
二、保证对机械的合理润滑:
正常合理的润滑是减少机械故障的有效措施之一。为此,要合理选用润滑剂,要根据机械的种类和应用结构的不同选用正常的润滑剂类别,根据机械的要求选用合适的质量等组,根据机械的要求选用合适的质量等级,根据机械的工作环境和不同的季节选择合适的润滑剂牌号。使用中,既不可使用低等级的润滑剂,也不可用其他种类的润滑剂代替,更不可使用劣质产品。
三、适时维修:
机械在使用过程中必然会出现各种各样的故障。在这些故障中,有些故障对机械设备的影响可能是很微小的,有些是比较严重的,甚至会造成机毁人亡的大事故。对出现的故障要及时进行处理,所谓适时进行处理就是要按照维修保养规程,对机械进行定期的保养与修理,各种等组的保养与修理必须按要求进行;在使用过程中要加强对工程机械的定期与不定期检查,及时了解机械的运行情况,对临时出现的故障,要及时进行处理,不要因故障小、不影响使用而延误维修时机,酿成更大故障。
四、采取正确的技术措施和组织管理措施:
作为工程机械的组织管理人员及操作人员要做到:注意保证机械在运输及保管过程中防止机械的损伤、变形、腐蚀等;严格机械的日常维护工作,使机械处于良好的技术状态;要教育操作人员正确的使用和操作各种工程机械,减少和防止人为失误引起的机械故障;要精心保养机械,要做到正确合理地进行定期与不定期保养,保持机械的清洁、干净,定期检查机械的技术状态,发现异常及时处理,对于松动和失调的零部件及时紧固和调整,对一些易损件进行预防性的更换等。
⑦ 什么是机械设备故障,如何分类
什么是设备故障?
所谓设备故障,一般是指设备失去或降低其规定功能的事件或现象,表现为设备的某些零件失去原有的精度或性能,使设备不能正常运行、技术性能降低,致使设备中断生产或效率降低而影响生产。
设备故障的分类
由于机器设备多种多样,因而故障的形式也有所不同,必须对其进行分类研究,以确定采用何种诊断方法,故障分类的形式主要有几种:
1、按故障存在的程度分类:
•暂时性故障:这类故障带有间断性,是在一定条件下,系统所产生的功能上的故障,通过调整系统参数或运行参数,不需要更换零部件又可恢复系统的正常功能;
•永久性故障:这类故障是由某些零部件损坏而引起的,必须经过更换或修复后才能消除故障。这类故障还可分为完全丧失所应有的完全性故障及导致某些局部功能丧失的局部性故障。
2、按故障发生、发展的进程分类:
•突发性故障:出现故障前无明显征兆,难以靠早期试验或测试来预测。这类故障发生时间很短暂,一般带有破坏性,如转子的断裂,人员误操作引起设备的损毁等属于这一类故障;
•渐发性故障:设备在使用过程中某些零部件因疲劳、腐蚀、磨损等使性能逐渐下降,最终超出所允许值而发生的故障。这类故障占有相当大的比重,具有一定的规律性,能通过早期状态监测和故障预备来预防。
3、按故障严重程度分类:
•破坏性故障:它既是突发性又是永久性的,故障发生后往往危及设备和人身安全;
•非破坏性故障:一般它是渐发性的又是局部性的,故障发生后暂时不会危及设备和人身的安全。
4、按故障发生的原因分类:
•外因故障:因操作人员操作不当或条件恶化而造成的故障,如调节系统的误动作,设备的超速运行等;
•内因故障:设备在运行过程中,因设计或生产方面存在的潜在隐患而造成的故障。如设备上的薄弱环节,制造商残余的局部应力和变形,材料的缺陷等都是潜在的因素。
5、按故障相关性分类:
•相关故障:也可称间接故障。这种故障是由设备其他部件引起的,如滑动轴承因断油而烧瓦的故障是因油路系统故障而引起的,这一点在故障诊断中应予注意;
•非相关故障:也可称直接故障。这是因零部件的本身直接因素引起的对设备进行故障诊断首先应诊断这类故障。
⑧ 机械设备故障原因与对策
机械设备发生故障的外部原因主要有:使用环境原因,如粉尘、磨粒、温度、压力、腐蚀、气候等因素;设备负荷原因,如负荷超过设计能力、负荷不均、短时负荷值超过设计值等;安装调试问题,如安装调试不当或未达到设计要求等。未按要求维护操作设备,如润滑不良、密封问题、设备使用初期未按要求试车磨合、岗位工错误操作等;上次检修不当,如更换或修复的零件不合要求、装配问题等
内部原因主要有:机械本身设计存在问题 零件制造质量不过关等
如果能够正确地分析各种故障原因,采取有效的、针对性强的防范措施,是可以有效地防止机械故障,延长机械使用寿命的。
一、保证正常的工作载荷:
要注意不能在超过机械所能承受的最大负荷下进行工作,要在力所能及的情况下使用机械。要尽量保证机械负荷的均匀加减,使机械处于较为平缓的负荷变动,具体地说,就是要较为均匀地加减油门,防止发动机、工作装置动作的大起大落。
二、保证对机械的合理润滑:
正常合理的润滑是减少机械故障的有效措施之一。为此,要合理选用润滑剂,要根据机械的种类和应用结构的不同选用正常的润滑剂类别,根据机械的要求选用合适的质量等组,根据机械的要求选用合适的质量等级,根据机械的工作环境和不同的季节选择合适的润滑剂牌号。使用中,既不可使用低等级的润滑剂,也不可用其他种类的润滑剂代替,更不可使用劣质产品。
三、适时维修:
机械在使用过程中必然会出现各种各样的故障。在这些故障中,有些故障对机械设备的影响可能是很微小的,有些是比较严重的,甚至会造成机毁人亡的大事故。对出现的故障要及时进行处理,所谓适时进行处理就是要按照维修保养规程,对机械进行定期的保养与修理,各种等组的保养与修理必须按要求进行;在使用过程中要加强对工程机械的定期与不定期检查,及时了解机械的运行情况,对临时出现的故障,要及时进行处理,不要因故障小、不影响使用而延误维修时机,酿成更大故障。
四、采取正确的技术措施和组织管理措施:
作为工程机械的组织管理人员及操作人员要做到:注意保证机械在运输及保管过程中防止机械的损伤、变形、腐蚀等;严格机械的日常维护工作,使机械处于良好的技术状态;要教育操作人员正确的使用和操作各种工程机械,减少和防止人为失误引起的机械故障;要精心保养机械,要做到正确合理地进行定期与不定期保养,保持机械的清洁、干净,定期检查机械的技术状态,发现异常及时处理,对于松动和失调的零部件及时紧固和调整,对一些易损件进行预防性的更换等。
⑨ 机械设备故障的诊断
机械故障诊断 需要进一步确定故障的性质,程度,类别,部位,原因,发展趋势等,为预报,控制,调整,维护提供依据。主要包括信号检测,特征提取,状态识别,诊断决策。 诊断技术发展几十年来,产生了巨大的经济效益,成为各国研究的热点。从诊断技术的各分支技术来看,美国占有领先地位。美国的一些公司,如Bently,HP等,他们的监测产品基本上代表了当今诊断技术的最高水平,不仅具有完善的监测功能,而且具有较强的诊断功能,在宇宙、军事、化工等方面具有广泛的应用。美国西屋公司的三套人工智能诊断软件(汽轮机TurbinAID,发电机GenAID,水化学ChemAID)对其所产机组的安全运行发挥了巨大的作用。还有美国通用电器公司研究的用于内燃电力机车故障排除的专家系统DELTA;美国NASA研制的用于动力系统诊断的专家系统;Delio Procts公司研制的用于汽车发动机冷却系统噪声原因诊断的专家系统ENGING COOLING ADCISOR等。近年来,由于微机特别是便携机的迅速发展,基于便携机的在线、离线监测与诊断系统日益普及,如美国生产的M6000系列产品,得到了广泛的应用。 英国于70年代初成立了机器保健与状态监测协会,到了80年代初在发展和推广设备诊断技术方面作了大量的工作,起到了积极的促进作用。英国曼彻斯特大学创立的沃森工业维修公司和斯旺西大学的摩擦磨损研究中心在诊断技术研究方面都有很高的声誉。英国原子能研究机构在核发电方面,利用噪声分析对炉体进行监测,以及对锅炉、压力容器、管道得无损检测等,起到了英国故障数据中心的作用。目前英国在摩擦磨损、汽车、飞机发动机监测和诊断方面仍具有领先的地位。 欧洲一些国家的诊断技术发展各具特色。如瑞典SPM公司的轴承监测技术,AGEMA公司的红外热像技术;挪威的船舶诊断技术;丹麦的BK公司的振动、噪声监测技术等都是各有千秋。日本在钢铁、化工等民用工业中诊断技术占有优势。东京大学、东京工业大学、京都大学、早稻田大学等高等学校着重基础性理论研究;而机械技术研究所、船舶技术研究所等国立研究机构重点研究机械基础件的诊断研究;三菱重工等民办企业在旋转机械故障诊断方面开展了系统的工作,所研制的“机械保健系统”在汽轮发电机组故障监测和诊断方面已经起到了有效的作用。 我国诊断技术的发展始于70年代末,而真正的起步应该从1983年南京首届设备诊断技术专题座谈会开始。虽起步较晚,但经过近几年的努力,加上政府有关部门多次组织外国诊断技术专家来华讲学,已基本跟上了国外在此方面的步伐,在某些理论研究方面已和国外不相上下。目前我国在一些特定设备的诊断研究方面很有特色,形成了一批自己的监测诊断产品。全国各行业都很重视在关键设备上装备故障诊断系统,特别是智能化的故障诊断专家系统,在电力系统、石化系统、冶金系统、以及高科技产业中的核动力电站、航空部门和载人航天工程等。工作比较集中的是大型旋转机械故障诊断系统,已经开发了20种以上的机组故障诊断系统和十余种可用来做现场故障诊断的便携式现场数据采集器。透平发电机、压缩机的诊断技术已列入国家重点攻关项目并受到高度重视;而西安交通大学的“大型选转机械计算机状态监测与故障诊断系统”,哈尔滨工业大学的“机组振动微机监测和故障诊断系统”。东北大学设备诊断工程中心经过多年研究,研制成功了“轧钢机状态监测诊断系统”,“风机工作状态监测诊断系统”,均取得了可喜的成果。 可用于机械状态监测与故障诊断的信号有振动诊断、油样分析、温度监测和无损检测探伤为主,其他技术或方法为辅的局面。这其中又以振动诊断涉及的领域最广、理论基础最为雄厚、研究得最为充分。目前,在振动信号的分析处理方面,除了经典的统计分析、时频域分析、时序模型分析、参数辨识外,近来又发展了频率细化技术、倒频谱分析、共振解调分析、三维全息谱分析、轴心轨迹分析以及基于非平稳信号假设的短时傅里叶变换、Winger分布和小波变换等。而当代人工智能的研究成果为机械故障诊断注入了新的活力,故障诊断的专家系统不仅在理论上得到了相当的发展,且己有成功的应用实例,作为人工智能的一个重要分支,人工神经网络的研究己成为机械故障诊断领域的一个最新研究热点。 随着计算机技术、嵌入式技术以及新兴的虚拟仪器技术的发展,故障诊断装置和仪器己经由最初的模拟式监测仪表发展到现在的基于计算机的实时在线监测一与故障诊断系统和基于微机的便携式监测分析系统。这类系统一般具有强大的信号分析与数据管理功能,能全面记录反映机器运行状态变化的各种信息,实现故障的精确诊断。随着网络技术的发展,远程分布式监测诊断系统成为目前的一个研究开发热点。