杂质半导体的导电性能与什么有关
1. 杂质和缺陷对半导体电性能产生影响的机理是什么
施主和受主杂质可以提供载流子,增大电导率;非施主和受主杂质往往会产生回复合中心,减短非平衡载流答子寿命;缺陷一般是产生复合中心。各种杂质和缺陷都对载流子都有散射作用,使迁移率降低,降低电导率。参见“http://blog.163.com/xmx028@126/”中的有关说明。
2. 为什么“在纯净的半导体中掺入微量的杂质,会使半导体的导电性能大大增强”
半导体中的杂质对电阻率的影响非常大。半导体中掺入微量杂质时,杂质原子附近的周期势场受到干扰并形成附加的束缚状态,在禁带中产加的杂质能级。例如四价元素锗或硅晶体中掺入五价元素磷、砷、锑等杂质原子时,杂质原子作为晶格的一分子,其五个价电子中有四个与周围的锗(或硅)原子形成共价结合,多余的一个电子被束缚于杂质原子附近,产生类氢能级。杂质能级位于禁带上方靠近导带底附近。杂质能级上的电子很易激发到导带成为电子载流子。这种能提供电子载流子的杂质称为施主,相应能级称为施主能级。施主能级上的电子跃迁到导带所需能量比从价带激发到导带所需能量小得多(图2)。在锗或硅晶体中掺入微量三价元素硼、铝、镓等杂质原子时,杂质原子与周围四个锗(或硅)原子形成共价结合时尚缺少一个电子,因而存在一个空位,与此空位相应的能量状态就是杂质能级,通常位于禁带下方靠近价带处。价带中的电子很易激发到杂质能级上填补这个空位,使杂质原子成为负离子。价带中由于缺少一个电子而形成一个空穴载流子(图3)。这种能提供空穴的杂质称为受主杂质。存在受主杂质时,在价带中形成一个空穴载流子所需能量比本征半导体情形要小得多。半导体掺杂后其电阻率大大下降。加热或光照产生的热激发或光激发都会使自由载流子数增加而导致电阻率减小,半导体热敏电阻和光敏电阻就是根据此原理制成的。对掺入施主杂质的半导体,导电载流子主要是导带中的电子,属电子型导电,称N型半导体。掺入受主杂质的半导体属空穴型导电,称P型半导体。半导体在任何温度下都能产生电子-空穴对,故N型半导体中可存在少量导电空穴,P型半导体中可存在少量导电电子,它们均称为少数载流子。在半导体器件的各种效应中,少数载流子常扮演重要角色。
3. 简述影响半导体导电性能的因素有哪些 简答题 答案
主要是掺入的杂质种类和数量、以及工作温度,从而影响到载流子浓度和迁移率,结果使得半导体的电导率发生变化。
4. 半导体中掺入杂质越多导电越好、我若反过来会成什么样呢
反过来不好吧,会导电不好,但是我也没试过,最好别玩。。。。
5. 由于杂质半导体主要靠多子导电,其温度特性要远好于本征半导体,这是为什么
你说的导电性能好是指电阻率低.电阻率主要决定于材料中载流子的浓度和迁移率版,两者均与杂质浓度和温度有关系权.
当不进行掺杂时,为纯半导体材料(本征半导体),其导电是需要特殊外界条件的(比如温度),本征半导体的电阻率随温度增加单调下降.
对于杂质半导体:
掺杂杂质使其导电性能变好主要是由于掺杂特定杂志和杂质电力提供载流子,载流子浓度增加从而电阻率降低,导电性能变好.但其也与温度有很大关系
温度很低时,本征激发忽略,主要由杂质电离提供载流子,它随温度升高而增加;散射主要由电离杂质决定,迁移率随温度升高增大,所以电阻率下降.
温度继续升高,杂质全部电离,本征激发还不显著时,载流子基本不变,晶格振动是主要影响因素,迁移率随温度升高而降低,所以电阻率随温度升高而增大.
继续升高到本征激发很快增加时,本征激发称为主要影响因素,表现出同本证半导体相同的特征.
6. 半导体的导电性能与哪些因素有关
半导体
导电性能介于导体与绝缘体之间的材料,叫做半导体.
例如:锗、硅版、砷化镓等.权
半导体在科学技术,工农业生产和生活中有着广泛的应用.(例如:电视、半导体收音机、电子计算机等)
半导体的一些电学特性
①压敏性:有的半导体在受到压力后电阻发生较大的变化.
用途:制成压敏元件,接入电路,测出电流变化,以确定压力的变化.
②热敏性:有的半导体在受热后电阻随温度升高而迅速减小.
用途:制成热敏电阻,用来测量很小范围内的温度变化.
③光敏性,有的半导体在光照下电阻大为减小.
用途:制成光敏电阻,用于对光照反映灵敏的自动控制设备中.
7. 杂质半导体的杂质半导体的导电特性
本征半导体的导电能力很弱,热稳定性也很差,因此,不宜直接用它制造半导体器件。半导体器件多数是用含有一定数量的某种杂质的半导体制成。根据掺入杂质性质的不同,杂质半导体分为N型半导体和P型半导体两种。
一、N型半导体在本征半导体硅(或锗)中掺入微量的5价元素,例如磷,则磷原子就取代了硅晶体中少量的硅原子,占据晶格上的某些位置。由图可见,磷原子最外层有5个价电子,其中4个价电子分别与邻近4个硅原子形成共价键结构,多余的1个价电子在共价键之外,只受到磷原子对它微弱的束缚,因此在室温下,即可获得挣脱束缚所需要的能量而成为自由电子,游离于晶格之间。失去电子的磷原子则成为不能移动的正离子。磷原子由于可以释放1个电子而被称为施主原子,又称施主杂质。
在本征半导体中每掺入1个磷原子就可产生1个自由电子,而本征激发产生的空穴的数目不变。这样,在掺入磷的半导体中,自由电子的数目就远远超过了空穴数目,成为多数载流子(简称多子),空穴则为少数载流子(简称少子)。显然,参与导电的主要是电子,故这种半导体称为电子型半导体,简称N型半导体。
二、P型半导体在本征半导体硅(或锗)中,若掺入微量的3价元素,如硼,这时硼原子就取代了晶体中的少量硅原子,占据晶格上的某些位置。由图可知,硼原子的3个价电子分别与其邻近的3个硅原子中的3个价电子组成完整的共价键,而与其相邻的另1个硅原子的共价键中则缺少1个电子,出现了1个空穴。这个空穴被附近硅原子中的价电子来填充后,使3价的硼原子获得了1个电子而变成负离子。同时,邻近共价键上出现1个空穴。由于硼原子起着接受电子的作用,故称为受主原子,又称受主杂质。
在本征半导体中每掺入1个硼原子就可以提供1个空穴,当掺入一定数量的硼原子时,就可以使半导体中空穴的数目远大于本征激发电子的数目,成为多数载流子,而电子则成为少数载流子。显然,参与导电的主要是空穴,故这种半导体称为空穴型半导体,简称P型半导体。
8. 掺杂对半导体导电性能的影响有那些
不掺杂的半导体为本征半导体,导电依靠受热激发的产生的激发电子和空穴.而掺杂专可以在很大程度上提属高半导体的导电性.
掺杂可分为N型掺杂和P型掺杂.N型掺杂会增加N(电子)导电.P型掺杂增加空穴导电.
PN结就是半导体一部分P型掺杂,一部分N型掺杂形成的.
希望对你有所帮助.
9. 杂质对半导体材料导电类型的影响
按照杂质在半导体材料中的行为可分为施主杂质、受主杂质和电中性杂质。按照杂内质电离能的大小可分为浅能容级杂质和深能级杂质。浅能级杂质对半导体材料导电性质影响大,而深能级杂质对少数载流子的复合影响更显著。氧、氮、碳在半导体材料中的行为比较复杂,所起的作用与金属杂质不同,以硅和砷化镓为例叙述杂质的行为。 1可能影响半导体的单向导电性2造成电路短路3烧坏用电器答案补充
半导体中的杂质对电导率的影响非常大,本征半导体经过掺杂就形成杂质半导体,一般可分为N型半导体和P型半导体。半导体中掺入微量杂质时,杂质原子附近的周期势场受到干扰并形成附加的束缚状态,在禁带中产生附加的杂质能级。能提供电子载流子的杂质称为施主(donor)杂质,相应能级称为施主能级,位于禁带上方靠近导带底附近。
10. 杂质半导体的特征是什么
在本征半导体中掺入微量杂质形成杂质半导体后,其导电性能将发生显着变化。按掺入杂质的不同,杂质半导体可分为N型半导体和P型半导体。N型半导体如果在本征半导体硅(或锗)中掺入微量5价杂质元素,如磷、锑、砷等,由于杂质原子的最外层有5个价电子,当其中的4个与硅原子形成共价键时,就会有多余的1个价电子。这个电子只受自身原子核的吸引,不受共价键的束缚,室温下就能变成自由电子,如图2.2(a)所示。磷(或锑、砷)原子失去一个电子后,成为不能移动的正离子。掺入的杂质元素越多,自由电子的浓度就越高,数量就越多。并且在这种杂质半导体中,电子浓度远远大于空穴浓度。因此,电子称为多数载流子(简称多子),空穴称为少数载流子(简称少子)。在外电场的作用下,这种杂质半导体的电流主要是电子电流。由于电子带负电荷,因此这种以电子导电为主的半导体称为N型半导体。
P型半导体
如果在本征半导体硅(或锗)中掺入微量3价元素,如硼、镓、铟等,由于杂质原子的最外层有3个价电子,当它和周围的硅原子形成共价键时,将缺少1个价电子而出现1个空穴,附近的共价键中的电子很容易来填补。如图2.2(b)所示。硼(或镓、铟)原子获得1个价电子后,成为不能移动的负离子,同时产生1个空穴。所以,掺入了3价元素的杂质半导体,空穴是多数载流子,电子是少数载流子。在外电场的作用下,其电流主要是空穴电流。这种以空穴导电为主的半导体称为P型半导体。
综上所述,在本征半导体中掺入5价元素可以得到N型半导体,掺入3价元素可以得到P型半导体。在N型半导体中,由于自由电子数目大大增加,增加了与空穴复合的机会,因此空穴数目便减少了;同样,在P型半导体中,空穴数目大大增加,自由电子数目较掺杂前减少了。由此可知,多数载流子的浓度取决于掺杂浓度;而少数载流子的浓度受温度影响很大。
本征半导体中电子和空穴的浓度相等,而掺杂半导体中电子和空穴的浓度差异相当大。在动态平衡条件下,N型半导体和P型半导体中少数载流子的浓度满足下列关系:
pi·ni=pp·np=pn·nn
式中,pi,ni,pp,np,pn,nn分别为本征半导体,P型半导体和N型半导体中的空穴浓度和电子浓度。
应当注意的是,掺杂后对于P型半导体和N型半导体而言,尽管都有一种载流子是多数载流子,一种载流子是少数载流子,但整个半导体中由于正负电荷数是相等的,它们的作用相互抵消,因此保持电中性。
希望能帮到您!