怎么判断p型半导体掺杂效果好
⑴ 在P型半导体材料中,掺杂物被称为什么
掺入少量杂质硼元素(或铟元素)的硅晶体(或锗晶体)中,由于半导体回原子(如硅原子)答被杂质原子取代,硼原子外层的三个外层电子与周围的半导体原子形成共价键的时候,会产生一个“ 空穴”,这个空穴可能吸引束缚电子来“填充”,使得硼原子成为带负电的 离子。这样,这类半导体由于含有较高浓度的“空穴”(“相当于”正电荷),成为能够导电的物质。
⑵ 关于P型半导体的问题
是你的假设问题,在同一个P型硅片中,3个空穴与5个空穴相比,空穴的浓度是不一样的,所以导电性也不一样。或者说,5个空穴允许电子流过的能力,要比3个空穴强一些。
⑶ 用n型半导体掺杂后形成的p型半导体 与 用本征半导体掺杂形成的p型半导体 有区别吗
用n型半导体掺杂后形成的p型半导体 与 用本征半导体掺杂形成的p型半导体 有区别吗版
不是所有权的掺杂都是有效的,因为硅与磷硼的掺杂会有些失败的部分,磷硼没有缔结成四价键,而是三价,这时候还是不会导电,也不会有pn节。
⑷ P型半导体有什么特征
在纯净的硅晶体中掺入三价元素(如硼)
⑸ 本征半导体掺杂成p型半导体中杂质的要求
1)首先要选择什么杂质
-
如果要掺杂成P型半导体可以选择B和BF和In.
-B是最常用的
-In和BF的质量比较大,适合于浅掺杂
-BF中的F可能对HCI或者NBTI
⑹ P型半导体中是不是杂质获取电子的能力强
理解的复有一定的深度,空穴是制不同原子间形成共价键。共价键使不同原子公用电子,达到最外层八个电子的稳定结构,如果还有原子剩余电子,则该电子自由。于是材料靠电子导电,即为N型。否则电子不足,照样共价后,便在共价的位置产生反电子,即为空穴。空穴不自由,但可以传递,从而材料导电类型变成P型。
⑺ 介绍下半导体的掺杂问题
杂质半导体: 通过扩散工艺,在本征半导体中掺入少量合适的杂质元素,可得到杂质半导体。
P型半导体的导电特性:掺入的杂质越多,多子(空穴)的浓度就越高,导电性能也就越强。
结论:
多子的浓度决定于杂质浓度。
少子的浓度决定于温度。
PN结的形成:将P型半导体与N型半导体制作在同一块硅片上,在它们的交界面就形成PN结。
PN结的特点:具有单向导电性。
半导体杂质 半导体中的杂质对电阻率的影响非常大。半导体中掺入微量杂质时,杂质原子附近的周期势场受到干扰并形成附加的束缚状态,在禁带中产加的杂质能级。例如四价元素锗或硅晶体中掺入五价元素磷、砷、锑等杂质原子时,杂质原子作为晶格的一分子,其五个价电子中有四个与周围的锗(或硅)原子形成共价结合,多余的一个电子被束缚于杂质原子附近,产生类氢能级。杂质能级位于禁带上方靠近导带底附近。杂质能级上的电子很易激发到导带成为电子载流子。这种能提供电子载流子的杂质称为施主,相应能级称为施主能级。施主能级上的电子跃迁到导带所需能量比从价带激发到导带所需能量小得多(图2)。在锗或硅晶体中掺入微量三价元素硼、铝、镓等杂质原子时,杂质原子与周围四个锗(或硅)原子形成共价结合时尚缺少一个电子,因而存在一个空位,与此空位相应的能量状态就是杂质能级,通常位于禁带下方靠近价带处。价带中的电子很易激发到杂质能级上填补这个空位,使杂质原子成为负离子。价带中由于缺少一个电子而形成一个空穴载流子(图3)。这种能提供空穴的杂质称为受主杂质。存在受主杂质时,在价带中形成一个空穴载流子所需能量比本征半导体情形要小得多。半导体掺杂后其电阻率大大下降。加热或光照产生的热激发或光激发都会使自由载流子数增加而导致电阻率减小,半导体热敏电阻和光敏电阻就是根据此原理制成的。对掺入施主杂质的半导体,导电载流子主要是导带中的电子,属电子型导电,称N型半导体。掺入受主杂质的半导体属空穴型导电,称P型半导体。半导体在任何温度下都能产生电子-空穴对,故N型半导体中可存在少量导电空穴,P型半导体中可存在少量导电电子,它们均称为少数载流子。在半导体器件的各种效应中,少数载流子常扮演重要角色。
半导体掺杂
半导体之所以能广泛应用在今日的数位世界中,凭借的就是其能借由在其晶格中植入杂质改变其电性,这个过程称之为掺杂(doping)。掺杂进入本质半导体(intrinsic semiconctor)的杂质浓度与极性皆会对半导体的导电特性产生很大的影响。而掺杂过的半导体则称为外质半导体(extrinsic semiconctor)。
半导体掺杂物
哪种材料适合作为某种半导体材料的掺杂物(dopant)需视两者的原子特性而定。一般而言,掺杂物依照其带给被掺杂材料的电荷正负被区分为施体(donor)与受体(acceptor)。施体原子带来的价电子(valence electrons)大多会与被掺杂的材料原子产生共价键,进而被束缚。而没有和被掺杂材料原子产生共价键的电子则会被施体原子微弱地束缚住,这个电子又称为施体电子。和本质半导体的价电子比起来,施体电子跃迁至传导带所需的能量较低,比较容易在半导体材料的晶格中移动,产生电流。虽然施体电子获得能量会跃迁至传导带,但并不会和本质半导体一样留下一个电洞,施体原子在失去了电子后只会固定在半导体材料的晶格中。因此这种因为掺杂而获得多余电子提供传导的半导体称为n型半导体(n-type semiconctor),n代表带负电荷的电子。
和施体相对的,受体原子进入半导体晶格后,因为其价电子数目比半导体原子的价电子数量少,等效上会带来一个的空位,这个多出的空位即可视为电洞。受体掺杂后的半导体称为p型半导体(p-type semiconctor),p代表带正电荷的电洞。
以一个硅的本质半导体来说明掺杂的影响。硅有四个价电子,常用于硅的掺杂物有三价与五价的元素。当只有三个价电子的三价元素如硼(boron)掺杂至硅半导体中时,硼扮演的即是受体的角色,掺杂了硼的硅半导体就是p型半导体。反过来说,如果五价元素如磷(phosphorus)掺杂至硅半导体时,磷扮演施体的角色,掺杂磷的硅半导体成为n型半导体。
一个半导体材料有可能先后掺杂施体与受体,而如何决定此外质半导体为n型或p型必须视掺杂后的半导体中,受体带来的电洞浓度较高或是施体带来的电子浓度较高,亦即何者为此外质半导体的“多数载子”(majority carrier)。和多数载子相对的是少数载子(minority carrier)。对于半导体元件的操作原理分析而言,少数载子在半导体中的行为有着非常重要的地位。
⑻ p型半导体掺杂与n型半导体掺杂一样吗,譬如在半导体氧化物中掺铝,p型和n型一样掺杂吗
NP型是硅中掺不同的杂质得到的 N型是多电子,一般掺P(磷) N(氮)
而P型是多空穴 一般掺B (硼) Al(铝)
⑼ 在P型半导体中一般掺哪种类型的杂质主要是什么元素
也称为空穴型半导体。P型半导体即空穴浓度远大于自由电子浓度的杂质半导体。回
在答纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位子,就形成P型半导体。在P型半导体中,空穴为多子,自由电子为少子,主要靠空穴导电。空穴主要由杂质原子提供,自由电子由热激发形成。掺入的杂质越多,多子(空穴)的浓度就越高,导电性能就越强。
⑽ 半导体的类型-N型、P型是怎样定义和区别的
下面,我们将采用对比分析的方法来认识P型半导体和N型半导体。
P型半导体也称为空穴型半导体。P型半导体即空穴浓度远大于自由电子浓度的杂质半导体。在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位子,就形成P型半导体。在P型半导体中,空穴为多子,自由电子为少子,主要靠空穴导电。空穴主要由杂质原子提供,自由电子由热激发形成。掺入的杂质越多,多子(空穴)的浓度就越高,导电性能就越强。
N型半导体也称为电子型半导体。N型半导体即自由电子浓度远大于空穴浓度的杂质半导体。在纯净的硅晶体中掺入五价元素(如磷),使之取代晶格中硅原子的位置,就形成了N型半导体。在N型半导体中,自由电子为多子,空穴为少子,主要靠自由电子导电。自由电子主要由杂质原子提供,空穴由热激发形成。掺入的杂质越多,多子(自由电子)的浓度就越高,导电性能就越强。
(10)怎么判断p型半导体掺杂效果好扩展阅读
半导体( semiconctor),指常温下导电性能介于导体(conctor)与绝缘体(insulator)之间的材料。半导体在收音机、电视机以及测温上有着广泛的应用。如二极管就是采用半导体制作的器件。半导体是指一种导电性可受控制,范围可从绝缘体至导体之间的材料。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。今日大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关连。常见的半导体材料有硅、锗、砷化镓等,而硅更是各种半导体材料中,在商业应用上最具有影响力的一种。
以GaN(氮化镓)为代表的第三代半导体材料及器件的开发是新兴半导体产业的核心和基础,其研究开发呈现出日新月异的发展势态。GaN基光电器件中,蓝色发光二极管LED率先实现商品化生产 成功开发蓝光LED和LD之后,科研方向转移到GaN紫外光探测器上 GaN材料在微波功率方面也有相当大的应用市场。氮化镓半导体开关被誉为半导体芯片设计上一个新的里程碑。美国佛罗里达大学的科学家已经开发出一种可用于制造新型电子开关的重要器件,这种电子开关可以提供平稳、无间断电源。
参考资料
半导体-网络