半导体为什么用单晶硅
1. 为何选硅做半导体材料多角度分析。
(1)热敏性 半导体材料的电阻率与温度有密切的关系。温度升高,半导体的电阻率会明显变小。例如纯锗(Ge),温度每升高10度,其电阻率就会减少到原来的一半。
(2)光电特性 很多半导体材料对光十分敏感,无光照时,不易导电;受到光照时,就变的容易导电了。例如,常用的硫化镉半导体光敏电阻,在无光照时电阻高达几十兆欧,受到光照时电阻会减小到几十千欧。半导体受光照后电阻明显变小的现象称为“光导电”。利用光导电特性制作的光电器件还有光电二极管和光电三极管等。
近年来广泛使用着一种半导体发光器件--发光二极管,它通过电流时能够发光,把电能直接转成光能。目前已制作出发黄,绿,红,蓝几色的发光二极管,以及发出不可见光红外线的发光二极管。
另一种常见的光电转换器件是硅光电池,它可以把光能直接转换成电能,是一种方便的而清洁的能源。
(3)搀杂特性 纯净的半导体材料电阻率很高,但掺入极微量的“杂质”元素后,其导电能力会发生极为显著的变化。例如,纯硅的电阻率为214×1000欧姆/厘米,若掺入百万分之一的硼元素,电阻率就会减小到0.4欧姆/厘米。因此,人们可以给半导体掺入微量的某种特定的杂质元素,精确控制它的导电能力,用以制作各种各样的半导体器件
半导体的导电性能比导体差而比绝缘体强。实际上,半导体与导体、绝缘体的区别在不仅在于导电能力的不同,更重要的是半导体具有独特的性能(特性)。
1. 在纯净的半导体中适当地掺入一定种类的极微量的杂质,半导体的导电性能就会成百万倍的增加—-这是半导体最显著、最突出的特性。例如,晶体管就是利用这种特性制成的。
2. 当环境温度升高一些时,半导体的导电能力就显著地增加;当环境温度下降一些时,半导体的导电能力就显著地下降。这种特性称为“热敏”,热敏电阻就是利用半导体的这种特性制成的。
3. 当有光线照射在某些半导体时,这些半导体就像导体一样,导电能力很强;当没有光线照射时,这些半导体就像绝缘体一样不导电,这种特性称为“光敏”。例如,用作自动化控制用的“光电二极管”、“光电三极管”和光敏电阻等,就是利用半导体的光敏特性制成的。
由此可见,温度和光照对晶体管的影响很大。因此,晶体管不能放在高温和强烈的光照环境中。在晶体管表面涂上一层黑漆也是为了防止光照对它的影响。最后,明确一个基本概验:所谓半导体材料,是一种晶体结构的材料,故“半导体”又叫“晶体”。
P性半导体和N型半导体----前面讲过,在纯净的半导体中加入一定类型的微量杂质,能使半导体的导电能力成百万倍的增加。加入了杂质的半导体可以分为两种类型:一种杂质加到半导体中去后,在半导体中会产生大量的带负电荷的自由电子,这种半导体叫做“N型半导体”(也叫“电子型半导体”);另一种杂质加到半导体中后,会产生大量带正电荷的“空穴”,这种半导体叫“P型半导体”(也叫“空穴型半导体”)。例如,在纯净的半导体锗中,加入微量的杂质锑,就能形成N型半导体。同样,如果在纯净的锗中,加入微量的杂质铟,就形成P型半导体。
一个PN结构成晶体二极管----设法把P型半导体(有大量的带正电荷的空穴)和N型半导体(有大量的带负电荷的自由电子)结合在一起,见图1所示。
图1
在P型半导体的N型半导体相结合的地方,就会形成一个特殊的薄层,这个特殊的薄层就叫“PN结”。晶体二极管实际上就是由一个PN结构成的(见图1)。
例如,收音机中应用的晶体二极管,其触丝(即触针)部分相当于P型半导体,N型锗片就是N型半导体,他们之间的接触面就是PN结。P端(或P端引出线)叫晶体二极管的正端(也称正极)。N端(或N端引出线)叫晶体二极管的负端(也称负极)。
如果像图2那样,把正端连接电池的正极,把负端接电池的负极,这是PN结的电阻值就小到只有几百欧姆了。因此,通过PN结的电流(I=U/R)就很大。这样的连接方法(图2a)叫“正向连接”。正向连接时,晶体管二极管(或PN结)两端承受的电压叫“正向电压”;处在正向电压下,二极管(或PN结)的电阻叫“正向电阻”,在正向电压下,通过二极管(或PN结)的电流叫“正向电流”。很明显,因为晶体二极管的正向电阻很小(几百欧姆),在一定正向电压下,正向电流(I=U/R)就会很大----这表明在正向电压下,二极管(或PN结)具有像导体一样的导电本领。
图2a 图2b
反过来,如果把P端接到电池的负极,N端接到电池的正极(见图2b)。这时PN结的电阻很大(大到几百千殴),电流(I=U/R)几乎不能通过二极管,或者说通过的电流很微弱。这样的连接方法叫“反向连接”。反向连接时,晶体管二极管(或PN结)两端承受的电压叫“反向电压”;处在反向电压下,二极管(或PN结)的电阻叫“反向电阻”,在反向电压下,通过二极管(或PN结)的电流叫“反向电流”。显然,因为晶体二极管的正向电阻很大(几百千欧姆),在一定的反向电压下,正向电流(I=U/R)就会很小,甚至可以忽略不计,----这表明在一定的反向电压下,二极管(或PN结)几乎不导电。
上叙实验说明这样一个结论:晶体二极管(或PN结)具有单向导电特性。
晶体二极管用字母“D”代表,在电路中常用图3的符号表示,即表示电流(正电荷)只能顺着箭头方向流动,而不能逆着箭头方向流动。图3是常用的晶体二极管的外形及符号。
图3
利用二极管的单向导电性可以用来整流(将交流电变成直流电)和检波(从高频或中频电信号取出音频信号)以及变频(如把高频变成固定的中频465千周)等。
PN结的极间电容----PN结的P型和N型两快半导体之间构成一个电容量很小的电容,叫做“极间电容”(如图4所示)。由于电容抗随频率的增高而减小。所以,PN结工作于高频时,高频信号容易被极间电容或反馈而影响PN结的工作。但在直流或低频下工作时,极间电容对直流和低频的阻抗很大,故一般不会影响PN结的工作性能。PN结的面积越大,极间电容量越大,影响也约大,这就是面接触型二极管(如整流二极管)和低频三极管不能用于高频工作的原因
2. 为什么晶体硅常用作半导体材料
单晶硅具有准金属的物理性质,有较弱的导电性,其电导率随温度的升高而增加,有显著的半导电性.超纯的单晶硅是本征半导体.
3. 为什么大多数半导体器件不用多晶硅而用单晶硅
半导体芯片加工需要纯净的单晶硅结构,这是因为晶胞重复的单晶结构能够提供制作工艺和器件特性所要求的电学和机械性质。糟糕的晶体结构和缺陷导致为缺陷的形成,并将影响硅片制备。
4. 为什么用多晶硅单晶硅作为集成电路的原料
因为多且便宜,硅是半导体,根据掺杂可改变电阻,改变导电类型变成P型或内N型,制作成以晶体容管(PNP管,NPN管,二极管,MOS管)为基本单元的电路,集成度高,硬性强,硅很容易氧化形成氧化硅可做电路间的绝缘层,可制造性高,方便设计。
5. 单晶硅有什么用途
单晶硅可以用于二极管级、整流器件级、电路级以及太阳能电池级单晶产品的生产和深加工制造,其后续产品集成电路和半导体分离器件已广泛应用于各个领域,在军事电子设备中也占有重要地位。
在日常生活里,单晶硅可以说无处不在,电视、电脑、冰箱、电话、手表、汽车,处处都离不开单晶硅材料,单晶硅作为科技应用普及材料之一,已经渗透到人们生活中各个角落。
人类在征服宇宙的征途上,所取得的每一步进步,都有着单晶硅的身影。航天飞机、宇宙飞船、人造卫星都要以单晶硅作为必不可少的原材料。
直拉单晶硅产品,可以用于二极管级、整流器件级、电路级以及太阳能电池级单晶产品的生产和深加工制造,其后续产品集成电路和半导体分离器件已广泛应用于各个领域,在军事电子设备中也占有重要地位。
(5)半导体为什么用单晶硅扩展阅读:
目前大多数的半导体材料都是单晶硅。随着单晶企业在成本控制和产品转化率上不断突破,以及单晶在分布式光伏发电上的应用优势,未来单晶有望实现对多晶的逆袭。
单晶硅与多晶硅是太阳能光伏晶硅组件的两条技术路线,因晶格排列不同而区分为单晶、多晶。业内普遍的观点认为,单晶硅具有发电量高的优势,但成本偏高。在后期运维方面,单晶硅具有一定优势。
因为单晶是单一的结构,所以晶体结构更为完美,多晶结构是无数个单晶的结合体。从晶体品质来说,无论是位错密度还是杂质含量,单晶都好于多晶的水平。
在电池和组件生产中,单晶硅能提供比多晶硅更高的转换效率和更高的抗开裂性。
6. 单晶硅为什么常用作半导体
硅非为:非晶硅,多晶硅,单晶硅
单晶硅是有多晶硅提纯而来的,
多晶硅内有很版多晶向的小单元,而单晶硅只权有一种晶向。常用到的是<111>和<100>晶向。因为半导体是薄膜工艺,要在硅衬底上生长外延层,在外延层中做器件,用单晶硅做衬底,保证生长的外延层的方向和衬底一致,保证了结构的致密性,稳定性,在整个晶体中都是长程有序,而不是在单个的小单元内是长程有序
7. 光伏发电为什么要用半导体硅材料
太阳能光伏发电的关键是光伏组件——将太阳光通过光伏效应,由光转化成电能。
光伏组件的基本结构是感光二极管,是通过微电子技术在三族到五族材料(也就是半导体材料)上制作的。
8. 为什么制造半导体要高纯硅
很简单 降低三极管的工作噪音 你可能不太懂 这么说 国产音响用三极管5块钱1个 进口三极管100元1个 除去配对成本就是晶体管噪声系数小 就是纯度高工艺精所致
9. 为什么硅是半导体
1。硅是不导电的,所以不是导体!
2。硅在有意识的参杂后可以导电,硅的色泽等方面类似于金属;是一种类似金属而又不是金属的物体!
硅叫半导体材料,硅形成二极管,三极管等才叫半导体!
10. 为什么半导体采用单击Si
要弄懂这个问题先从“化学元素周期表”学起,再去看看半导体行业的发展史回。
在电子元器件中,常用的答半导体材料有:元素半导体,如硅,锗等;化合物半导体,如砷化镓等。其中硅是目前最常用的一种半导体材料。
就硅和锗的制造而言,其原材料不同和制造工艺有差别,而目前的社会生产中,单晶硅的制造更为普遍。
就硅和锗的特性而言,输入特性:锗管导通电压低(0.2-0.3v),硅管导通电压高(0.6-0.7v)。饱和压降:锗管饱和压降比硅管小(锗管的优点)。击穿电压:硅管相对锗管更适应电压较高场合。温度特性:温度上升对硅管的漏电流影响小,即硅管有更好的耐高温性能。