某半导体的介电常数是多少
1. 铁(或者钢)的电导率、磁导率、介电常数各是多少急!!!急!!!
电导率9.93×10的6次方(米欧姆),就是米欧姆
铁磁性材料的相对磁导率μr=μ/μ0如铸铁为200~400;硅钢片为7000~10000;镍锌铁氧体为10~1000;镍铁合金为2000;锰锌铁氧体为300~5000。
电介质经常是绝缘体。其例子包括瓷器(陶器),云母,玻璃度,塑料,和各种金属氧化物。有些液体和气体可以作为好的电介质材料。干空气是良好的电介质,并被用在可变电容器以及某些类型的传输线。蒸馏水如果保持没有杂质的话是好的电介质,其相对介电常数约为80。
(1)某半导体的介电常数是多少扩展阅读:
一、电导率与温度具有很大相关性。金属的电导率随着温度的升高而减小。半导体的电导率随着温度的升高而增加。在一段温度值域内,电导率可以被近似为与温度成正比。为了要比较物质在不同温度状况的电导率,必须设定一个共同的参考温度。电导率与温度的相关性,时常可以表达为,电导率对上温度线图的斜率。
二、磁导率的测量是间接测量,测出磁心上绕组线圈的电感量,再用公式计算出磁芯材料的磁导率。所以,磁导率的测试仪器就是电感测试仪。在此强调指出,有些简易的电感测试仪器,测试频率不能调,而且测试电压也不能调。例如某些电桥,测试频率为100Hz或1kHz,测试电压为0.3V,给出的这个0.3V并不是电感线圈两端的电压,而是信号发生器产生的电压。
三、相对介电常数εr可以用静电场用如下方式测量:首先在两块极板之间为真空的时候测试电容器的电容C0。然后,用同样的电容极板间距离但在极板间加入电介质后测得电容Cx。然后相对介电常数可以用下式计算εr=Cx/C0
在标准大气压下,不含二氧化碳的干燥空气的相对电容率εr=1.00053。因此,用这种电极构形在空气中的电容Ca来代替C0来测量相对电容率εr时,也有足够的准确度。(参考GB/T 1409-2006)
2. 电容c和介电常数ε的区别
一、释义不同
1、电容同名电容器,(英文名称:capacitor。)通常简称其容纳电荷的本领为电容,用字母C表示。定义1:电容器,顾名思义,是‘装电的容器’,是一种容纳电荷的器件。
2、介质在外加电场时会产生感应电荷而削弱电场,原外加电场(真空中)与最终介质中电场比值即为介电常数( permittivity)又称诱电率,与频率相关。
二、测量方法不同
1、电容计算通用公式C=Q/U平行板电容器专用公式:板间电场强度E=U/d ,电容器电容决定式 C=εS/4πkd;
2、介电常数εr可以用静电场用如下方式测量:首先在两块极板之间为真空的时候测试电容器的电容C0。然后,用同样的电容极板间距离但在极板间加入电介质后测得电容Cx。然后相对介电常数可以用下式计算
εr=Cx/C0
在标准大气压下,不含二氧化碳的干燥空气的相对电容率εr=1.00053。因此,用这种电极构形在空气中的电容Ca来代替C0来测量相对电容率εr时,也有足够的准确度。对于时变电磁场,物质的介电常数和频率相关,通常称为介电系数。
三、作用和应用不同
1、电容器的作用及应用
(1)耦合:用在耦合电路中的电容称为耦合电容,在阻容耦合放大器和其他电容耦合电路中大量使用这种电容电路,起隔直流通交流作用。
(2)滤波:用在滤波电路中的电容器称为滤波电容,在电源滤波和各种滤波器电路中使用这种电容电路,滤波电容将一定频段内的信号从总信号中去除。
(3)退耦:用在退耦电路中的电容器称为退耦电容,在多级放大器的直流电压供给电路中使用这种电容电路,退耦电容消除每级放大器之间的有害低频交连。
(4)高频消振:用在高频消振电路中的电容称为高频消振电容,在音频负反馈放大器中,为了消振可能出现的高频自激,采用这种电容电路,以消除放大器可能出现的高频啸叫。
(5)谐振:用在LC谐振电路中的电容器称为谐振电容,LC并联和串联谐振电路中都需这种电容电路。
(6)旁路:用在旁路电路中的电容器称为旁路电容,电路中如果需要从信号中去掉某一频段的信号,可以使用旁路电容电路,根据所去掉信号频率不同,有全频域(所有交流信号)旁路电容电路和高频旁路电容电路。
(7)中和:用在中和电路中的电容器称为中和电容。在收音机高频和中频放大器,电视机高频放大器中,采用这种中和电容电路,以消除自激。
(8)定时:用在定时电路中的电容器称为定时电容。在需要通过电容充电、放电进行时间控制的电路中使用定时电容电路,电容起控制时间常数大小的作用。
(9)积分:用在积分电路中的电容器称为积分电容。在电势场扫描的同步分离电路中,采用这种积分电容电路,可以从场复合同步信号中取出场同步信号。
(10)微分:用在微分电路中的电容器称为微分电容。在触发器电路中为了得到尖顶触发信号,采用这种微分电容电路,以从各类(主要是矩形脉冲)信号中得到尖顶脉冲触发信号。
(11)补偿:用在补偿电路中的电容器称为补偿电容,在卡座的低音补偿电路中,使用这种低频补偿电容电路,以提升放音信号中的低频信号,此外,还有高频补偿电容电路。
(12)自举:用在自举电路中的电容器称为自举电容,常用的OTL功率放大器输出级电路采用这种自举电容电路,以通过正反馈的方式少量提升信号的正半周幅度。
(13)分频:在分频电路中的电容器称为分频电容,在音箱的扬声器分频电路中,使用分频电容电路,以使高频扬声器工作在高频段,中频扬声器工作在中频段,低频扬声器工作在低频段。
(14)负载电容:是指与石英晶体谐振器一起决定负载谐振频率的有效外界电容。负载电容常用的标准值有16pF、20pF、30pF、50pF和100pF。负载电容可以根据具体情况作适当的调整,通过调整一般可以将谐振器的工作频率调到标称值.
2、介电常数材料的应用
近十年来,半导体工业界对低介电常数材料的研究日益增多,材料的种类也五花八门。然而这些低介电常数材料能够在集成电路生产工艺中应用的速度却远没有人们想象的那么快。
其主要原因是许多低介电常数材料并不能满足集成电路工艺应用的要求。图2是不同时期半导体工业界预计低介电常数材料在集成电路工艺中应用的前景预测。
早在1997年,人们就认为在2003年,集成电路工艺中将使用的绝缘材料的介电常数(k值)将达到1.5。然而随着时间的推移,这种乐观的估计被不断更新。到2003年,国际半导体技术规划(ITRS 2003)给出低介电常数材料在集成电路未来几年的应用,其介电常数范围已经变成2.7~3.1。
在超大规模集成电路制造商中,TSMC、 Motorola、AMD以及NEC等许多公司为了开发90nm及其以下技术的研究,先后选用了应用材料公司(Applied Materials)的Black Diamond 作为低介电常数材料。
该材料采用PE-CVD技术,与现有集成电路生产工艺完全融合,并且引入BLOk薄膜作为低介电常数材料与金属间的隔离层,很好的解决了上述提及的诸多问题,是已经用于集成电路商业化生产为数不多的低介电常数材料之一。
3. 金属的介电常数是多少
介电常数
电容器极板间充满
电介质
时,
电容增大的倍数叫做电介质的介电常回数,用ε表示
并且明确答其单位是F·m-1(定义1).
电容器极板间充满某种电介质时,
电容增大到的倍数,叫做这种电介常数,
也用ε表示,没有单位(定义2).
空气的介电常数为1,金属介电常数一般都很小
绝缘体
介电常数比较大
4. 静电场中的导体和电解质,分别什么时候用ε0,εr,ε
ε0为真空介电常数,电介质为真空时使用;ε为介质(可以为电介质,也可以为回金属或带隙较窄的半答导体,只不过对于金属或窄带隙半导体,ε为复数,有实部和虚部,虚部代表焦耳热损耗)的绝对介电常数,其与ε0具有相同的量纲,且ε=εrε0;εr则为介质相对于真空的相对介电常数,它是无量纲量,εr=ε/ε0. 电容公式C=εS/d中的ε就是绝对介电常数。由此可见,真空的绝对介电常数为ε0,相对介电常数为1.
5. FR-4的电路板,厚1.0与0.8有什么区别,另介电常数4.2与4.6的哪个做高频好
电路板,厚1.0mm比0.8mm的坚固耐用。介电常数越低,绝缘程度越高,介电常数4.2的做高频好。
近十年来,半导体工业界对低介电常数材料的研究日益增多,材料的种类也五花八门。然而这些低介电常数材料能够在集成电路生产工艺中应用的速度却远没有人们想象的那么快。其主要 低介电常数薄膜机械性质量测结果
原因是许多低介电常数材料并不能满足集成电路工艺应用的要求。图2是不同时期半导体工业界预计低介电常数材料在集成电路工艺中应用的前景预测。 早在1997年,人们就认为在2003年,集成电路工艺中将使用的绝缘材料的介电常数(k值)将达到1.5。然而随着时间的推移,这种乐观的估计被不断更新。到2003年,国际半导体技术规划(ITRS 2003[7])给出低介电常数材料在集成电路未来几年的应用,其介电常数范围已经变成2.7~3.1。 造成人们的预计与现实如此大差异的原因是,在集成电路工艺中,低介电常数材料必须满足诸多条件,例如:足够的机械强度(MECHANICAL strength)以支撑多层连线的架构、高杨氏系数(Young's molus)、高击穿电压(breakdown voltage>4MV/cm)、低漏电(leakage current<10-9 at 1MV/cm)、高热稳定性(thermal stability >450oC)、良好的粘合强度(adhesion strength)、低吸水性(low moisture uptake)、低薄膜应力(low film stress)、高平坦化能力(planarization)、低热涨系数(coefficient of thermal expansion)以及与化学机械抛光工艺的兼容性(compatibility with CMP process)等等。能够满足上述特性的完美的低介电常数材料并不容易获得。例如,薄膜的介电常数与热传导系数往往就呈反比关系。因此,低介电常数材料本身的特性就直接影响到工艺集成的难易度。 目前在超大规模集成电路制造商中,TSMC、 Motorola、AMD以及NEC等许多公司为了开发90nm及其以下技术的研究,先后选用了应用材料公司(Applied Materials)的Black Diamond 作为低介电常数材料。该材料采用PE-CVD技术[8] ,与现有集成电路生产工艺完全融合,并且引入BLOk薄膜作为低介电常数材料与金属间的隔离层,很好的解决了上述提及的诸多问题,是目前已经用于集成电路商业化生产为数不多的低介电常数材料之一。
6. 砷化镓的电导率、相对介电常数、相对磁导率是多少
电导率σ=2Ω -1 CM -1,相对介电常数=介质的介电常数/真空介电常数,相对磁导率=介质磁导率/真空磁导率。
砷化镓是一种化合物半导体材料,分子式GaAs。立方晶系闪锌矿结构,即由As和Ga两种原子各自组成面心立方晶格套构而成的复式晶格,其晶格常数是5.6419A。室温下禁带宽度1.428eV,是直接带隙半导体,熔点1238℃,质量密度5.307g/cm3,电容率13.18。
(6)某半导体的介电常数是多少扩展阅读:
注意事项:
1、与众多硅电路相同,砷化镓芯片也是静电敏感器件,应该接地操作。
2、砷化镓不应有高温工艺。因为芯片温度不能超过320℃,所以焊接放置芯片和封盖操作时应特别注意。
3、砷化镓包含砷元素,是作为有毒材料对待的。报废产品应该放置于合适的容器中(第十五节)。 第十四节包含对在封装件内部的芯片底部接触放置的指引。
7. 大哥,请问您知道,XLPE电缆半导电层的介电常数吗
半导电层的介电常数,与电导率有一定关系,介电常数实际上是它里面导电颗粒的电内容效应影容响。去看德国人写的《Broadband measurement of the conctivity and the permittivity of semiconcting materials in high voltage xlpe cables》论文,100kHz下XLPE半导电层的介电常数为8000!你没看错
8. 半导体问题
有效质量指电子或者空穴运动中表现出来的静止质量,反映在迁移率上。迁移内率大就意味着有效容质量小。
实际测试主要利用电子回旋共振的方法测定有效质量。当然,如果你有具体的能带结构,可以利用求能带顶或底的二次微分的倒数来求得有效质量。
杂质主要有几种,一种是掺杂杂质,包括施主和受主,如P,As(施主),B,Ga(受主);第二种是复合中心杂质,例如金等,可以通过加入这些材料在禁带内部形成杂质能级提高复合速度。
缺陷,主要包括点缺陷(原子空位),位错和层错。
杂质能级不一定都位于禁带之中,利用类氢模型可以计算杂质能级的位置。
一般来说有:Ec-Ed=13.6eVxm*/(me2) 其中m*为电子有效质量,m为电子质量,e为半导体介电常数。
9. 半导体与绝缘体的介电常数与折射率的关系
但是,它的折射率为1.33,亦即水的光频介电常数ε→∞约为1.77,比81与电场强度E不再有线性关系 ,这使电介质表现出种种非线性效应(见非线性