寿命决定半导体的什么性能
㈠ 少子寿命是什么东西怎么单位是微米它能直接影响导电性能么
少子寿命是半导体材料和器件的重要参数。它直接反映了材料的质量和器件特性。能够准确的得到这个参数,对于半导体器件制造具有重要意义.少子,即少数载流子,是半导体物理的概念。 它相对于多子而言。
㈡ 影响半导体性能的三个因素
半导体五大特性∶掺杂性,热敏性,光敏性,负电阻率温度特性,整流特性。
三个因素——杂质、温度、光照
㈢ 半导体主要有哪些特性
半导体的特征:
一、半导体的导电能力介于导体和绝缘体之间,如硅、锗、硒等,它们的电阻率通常在 之间。
二、半导体之所以得到广泛应用,是因为它的导电能力受掺杂、温度和光照的影响十分显著。
三、如纯净的半导体单晶硅在室温下电阻率约为 ,若按百万分之一的比例掺入少量杂质(如磷)后,其电阻率急剧下降为 ,几乎降低了一百万倍。半导体具有这种性能的根本原因在于半导体原子结构的特殊性。
常用的半导体材料是单晶硅(Si)和单晶锗(Ge)。所谓单晶,是指整块晶体中的原子按一定规则整齐地排列着的晶体。非常纯净的单晶半导体称为本征半导体。
(3)寿命决定半导体的什么性能扩展阅读
一、本征半导体的原子结构
半导体锗和硅都是四价元素,其原子结构示意图如图Z0102所示。它们的最外层都有4个电子,带4个单位负电荷。通常把原子核和内层电子看作一个整体,称为惯性核。
惯性核带有4个单位正电荷,最外层有4个价电子带有4个单位负电荷,因此,整个原子为电中性。
二、应用
1、在无线电收音机及电视机中,作为“讯号放大器/整流器”用。
2、半导体可以用来测量温度,测温范围可以达到生产、生活、医疗卫生、科研教学等应用的70%的领域,有较高的准确度和稳定性,分辨率可达0.1℃,甚至达到0.01℃也不是不可能,线性度0.2%,测温范围-100~+300℃,是性价比极高的一种测温元件。
3、半导体致冷器的发展, 它也叫热电致冷器或温差致冷器, 它采用了帕尔贴效应.
㈣ 什么是影响半导体器件性能的一个重要因素
从本质上来说,造来成半导体源器件热不稳定的重要因素主要有两个:
(1)半导体禁带宽度与温度有关(一般,随着温度的升高而减小);
(2)载流子浓度与温度有关,特别是少数载流子浓度与温度有很大的关系——将随着温度的升高而指数式增大。载流子浓度与温度的关系决定于杂质电离和本征激发两种过程。
㈤ 非平衡载流子的寿命的长短对半导体所处状态的影响是什么
用光的或电的方法对半导体施加外界作用,破坏了热平衡条件,使半导体处于与热平衡状态相偏离的状态,则称为非平衡状态。处于非平衡状态的半导体,其载流子比平衡状态时多出来的那一部分载流子称为非平衡载流子
㈥ 产品的性能 寿命 可靠性取决于什么
取决于制造产品的材料、产品的设计、产品的制造工艺、产品使用方法、使用环境及产品维护,如果产品只是一个大型的产品的一部分,还和其他一同构成此大型产品部分有关。
㈦ 对半导体性能都有很大影响的外界因素有哪些
对半导体性质影响最大的是温度:禁带宽度与温度有关;载流子浓度更是与温内度有关;载流子容迁移率也与温度有关;半导体的体积等也与温度有关(热膨胀)。
光照影响:可产生非平衡载流子,导致光电导。
压力影响:压阻效应。
接触影响:形成pn结、金属-半导体接触等。
电场影响:可产生场致发射等。
磁场影响:半导体的Hall效应远大于金属。
气氛影响:表面状态与气氛有很大关系。
㈧ 半导体材料的特性
半导体材料的特性:
半导体材料是室温下导电性介于导电材料和绝缘材料之间的一类功能材料。靠电子和空穴两种载流子实现导电,室温时电阻率一般在10-5~107欧·米之间。通常电阻率随温度升高而增大;若掺入活性杂质或用光、射线辐照,可使其电阻率有几个数量级的变化。
此外,半导体材料的导电性对外界条件(如热、光、电、磁等因素)的变化非常敏感,据此可以制造各种敏感元件,用于信息转换。
半导体材料的特性参数有禁带宽度、电阻率、载流子迁移率、非平衡载流子寿命和位错密度。禁带宽度由半导体的电子态、原子组态决定,反映组成这种材料的原子中价电子从束缚状态激发到自由状态所需的能量。电阻率、载流子迁移率反映材料的导电能力。
非平衡载流子寿命反映半导体材料在外界作用(如光或电场)下内部载流子由非平衡状态向平衡状态过渡的弛豫特性。位错是晶体中最常见的一类缺陷。位错密度用来衡量半导体单晶材料晶格完整性的程度,对于非晶态半导体材料,则没有这一参数。
半导体材料的特性参数不仅能反映半导体材料与其他非半导体材料之间的差别,更重要的是能反映各种半导体材料之间甚至同一种材料在不同情况下,其特性的量值差别。
(8)寿命决定半导体的什么性能扩展阅读:
材料工艺
半导体材料特性参数的大小与存在于材料中的杂质原子和晶体缺陷有很大关系。例如电阻率因杂质原子的类型和数量的不同而可能作大范围的变化,而载流子迁移率和非平衡载流子寿命
一般随杂质原子和晶体缺陷的增加而减小。另一方面,半导体材料的各种半导体性质又离不开各种杂质原子的作用。而对于晶体缺陷,除了在一般情况下要尽可能减少和消除外,有的情况下也希望控制在一定的水平,甚至当已经存在缺陷时可以经过适当的处理而加以利用。
为了要达到对半导体材料的杂质原子和晶体缺陷这种既要限制又要利用的目的,需要发展一套制备合乎要求的半导体材料的方法,即所谓半导体材料工艺。这些工艺大致可概括为提纯、单晶制备和杂质与缺陷控制。
半导体材料的提纯“主要是除去材料中的杂质。提纯方法可分化学法和物理法。化学提纯是把材料制成某种中间化合物以便系统地除去某些杂质,最后再把材料(元素)从某种容易分解的化合物中分离出来。物理提纯常用的是区域熔炼技术,即将半导体材料铸成锭条,从锭条的一端开始形成一定长度的熔化区域。
利用杂质在凝固过程中的分凝现象,当此熔区从一端至另一端重复移动多次后,杂质富集于锭条的两端。去掉两端的材料,剩下的即为具有较高纯度的材料(见区熔法晶体生长)。此外还有真空蒸发、真空蒸馏等物理方法。锗、硅是能够得到的纯度最高的半导体材料,其主要杂质原子所占比例可以小于百亿分之一。
㈨ 半导体材料声子寿命意义。
少子寿命吧?少子寿命长意味着少子与多子复合的时间比较慢,少子寿命长的材料主要可以用来做太阳能电池等光伏器件。
㈩ 工程实际中,影响半导体材料少子寿命的因素有哪些
1.少量深能级杂抄质能大大降低少子寿命。过渡金属杂质往往是深能级杂质,如Fe、Cr、Mo等杂质。
2. 电阻率的影响
随着电阻率的增大,少子寿命也不断增大。
3. 温度变化强烈影响少子寿命。但是影响规律十分复杂。一般为随温度上升少子寿命先降后升。