当前位置:首页 » 半导体业 » 半导体材料就业怎么样

半导体材料就业怎么样

发布时间: 2021-03-08 06:08:12

㈠ 有人了解半导体材料吗它的就业前景如何有什么单位可以选择

介于导体与非导体间之物质(如矽或锗),故其导电性居于金属与绝缘体之间,并随温度而增加。半导体材料,呈中度至高度之电阻性(视制造之际所掺杂之物质而定)。纯半导体材料( 称为内质半导体),导电性低;若于其中添加特定类型之杂质原子(成为外质半导体),则可大为增加其导电性。施体杂质(5价)可大量增加电子数目,而产生负型半导体;受体杂质(3价)则大量增加电洞数目,而产生正型半导体。此种外质半导体之导电性,端视其中杂质之类型及总量而定。不同导电性之半导体若经集合一起,可形成各种接面; 此即为半导体装置(供作电子组件使用)之基础。半导体一词,亦常意指此类装置本身(如电晶体、积体电路等)。 补充:良好的半导体有四个价电子,所以加入五价电子的原子会增加电子数(多一个),而加入三价电子,会多一个电洞(少一个) 。

以非晶态半导体材料为主体制成的固态电子器件。非晶态半导体虽然在整体上分子排列无序,但是仍具有单晶体的微观结构,因此具有许多特殊的性质。1975年,英国W.G.斯皮尔在辉光放电分解硅烷法制备的非晶硅薄膜中掺杂成功,使非晶硅薄膜的电阻率变化10个数量级,促进非晶态半导体器件的开发和应用。同单晶材料相比,非晶态半导体材料制备工艺简单,对衬底结构无特殊要求,易于大面积生长,掺杂后电阻率变化大,可以制成多种器件。非晶硅太阳能电池吸收系数大,转换效率高,面积大,已应用到计算器、电子表等商品中。非晶硅薄膜场效应管阵列可用作大面积液晶平面显示屏的寻址开关。利用某些硫系非晶态半导体材料的结构转变来记录和存储光电信息的器件已应用于计算机或控制系统中。利用非晶态薄膜的电荷存储和光电导特性可制成用于静态图像光电转换的静电复印机感光体和用于动态图像光电转换的电视摄像管的靶面。

具有半导体性质的非晶态材料。非晶态半导体是半导体的一个重要部分。50年代B.T.科洛米耶茨等人开始了对硫系玻璃的研究,当时很少有人注意,直到1968年S.R.奥弗申斯基关於用硫系薄膜制作开关器件的专利发表以后,才引起人们对非晶态半导体的兴趣。1975年W.E.斯皮尔等人在硅烷辉光放电分解制备的非晶硅中实现了掺杂效应,使控制电导和制造PN结成为可能,从而为非晶硅材料的应用开辟了广阔的前景。在理论方面,P.W.安德森和莫脱,N.F.建立了非晶态半导体的电子理论,并因而荣获1977年的诺贝尔物理学奖。目前无论在理论方面,还是在应用方面,非晶态半导体的研究正在很快地发展著。
分类 目前主要的非晶态半导体有两大类。
硫系玻璃。含硫族元素的非晶态半导体。例如As-Se、As-S,通常的制备方法是熔体冷却或汽相沉积。
四面体键非晶态半导体。如非晶Si、Ge、GaAs等,此类材料的非晶态不能用熔体冷却的办法来获得,只能用薄膜淀积的办法(如蒸发、溅射、辉光放电或化学汽相淀积等),只要衬底温度足够低,淀积的薄膜就是非晶态结构。四面体键非晶态半导体材料的性质,与制备的工艺方法和工艺条件密切相关。图1 不同方法制备非晶硅的光吸收系数 给出了不同制备工艺的非晶硅光吸收系数谱,其中a、b制备工艺是硅烷辉光放电分解,衬底温度分别为500K和300K,c制备工艺是溅射,d制备工艺为蒸发。非晶硅的导电性质和光电导性质也与制备工艺密切相关。其实,硅烷辉光放电法制备的非晶硅中,含有大量H,有时又称为非晶的硅氢合金;不同工艺条件,氢含量不同,直接影响到材料的性质。与此相反,硫系玻璃的性质与制备方法关系不大。图2 汽相淀积溅射薄膜和熔体急冷成块体AsSeTe的光吸收系数谱 给出了一个典型的实例,用熔体冷却和溅射的办法制备的AsSeTe样品,它们的光吸收系数谱具有相同的曲线。
非晶态半导体的电子结构 非晶态与晶态半导体具有类似的基本能带结构,也有导带、价带和禁带(见固体的能带)。材料的基本能带结构主要取决於原子附近的状况,可以用化学键模型作定性的解释。以四面体键的非晶Ge、Si为例,Ge、Si中四个价电子经sp杂化,近邻原子的价电子之间形成共价键,其成键态对应於价带;反键态对应於导带。无论是Ge、Si的晶态还是非晶态,基本结合方式是相同的,只是在非晶态中键角和键长有一定程度的畸变,因而它们的基本能带结构是相类似的。然而,非晶态半导体中的电子态与晶态比较也有著本质的区别。晶态半导体的结构是周期有序的,或者说具有平移对称性,电子波函数是布洛赫函数,波矢是与平移对称性相联系的量子数,非晶态半导体不存在有周期性, 不再是好的量子数。晶态半导体中电子的运动是比较自由的,电子运动的平均自由程远大於原子间距;非晶态半导体中结构缺陷的畸变使得电子的平均自由程大大减小,当平均自由程接近原子间距的数量级时,在晶态半导体中建立起来的电子漂移运动的概念就变得没有意义了。非晶态半导体能带边态密度的变化不像晶态那样陡,而是拖有不同程度的带尾(如图3 非晶态半导体的态密度与能量的关系 所示)。非晶态半导体能带中的电子态分为两类:一类称为扩展态,另一类为局域态。处在扩展态的每个电子,为整个固体所共有,可以在固体整个尺度内找到;它在外场中运动类似於晶体中的电子;处在局域态的每个电子基本局限在某一区域,它的状态波函数只能在围绕某一点的一个不大尺度内显著不为零,它们需要靠声子的协助,进行跳跃式导电。在一个能带中,带中心部分为扩展态,带尾部分为局域态,它们之间有一分界处,如图4 非晶态半导体的扩展态、局域态和迁移率边 中的和,这个分界处称为迁移率边。1960年莫脱首先提出了迁移率边的概念。如果把迁移率看成是电子态能量的函数,莫脱认为在分界处和存在有迁移率的突变。局域态中的电子是跳跃式导电的,依靠与点阵振动交换能量,从一个局域态跳到另一个局域态,因而当温度趋向0K时,局域态电子迁移率趋於零。扩展态中电子导电类似於晶体中的电子,当趋於0K时,迁移率趋向有限值。莫脱进一步认为迁移率边对应於电子平均自由程接近於原子间距的情况,并定义这种情况下的电导率为最小金属化电导率。然而,目前围绕著迁移率边和最小金属化电导率仍有争论。
缺陷 非晶态半导体与晶态相比较,其中存在大量的缺陷。这些缺陷在禁带之中引入一系列局域能级,它们对非晶态半导体的电学和光学性质有著重要的影响。四面体键非晶态半导体和硫系玻璃,这两类非晶态半导体的缺陷有著显著的差别。
非晶硅中的缺陷主要是空位、微空洞。硅原子外层有四个价电子,正常情况应与近邻的四个硅原子形成四个共价键。存在有空位和微空洞使得有些硅原子周围四个近邻原子不足,而产生一些悬挂键,在中性悬挂键上有一个未成键的电子。悬挂键还有两种可能的带电状态:释放未成键的电子成为正电中心,这是施主态;接受第二个电子成为负电中心,这是受主态。它们对应的能级在禁带之中,分别称为施主和受主能级。因为受主态表示悬挂键上有两个电子占据的情况,两个电子间的库仑排斥作用,使得受主能级位置高於施主能级,称为正相关能。因此在一般情况下,悬挂键保持只有一个电子占据的中性状态,在实验中观察到悬挂键上未配对电子的自旋共振。1975年斯皮尔等人利用硅烷辉光放电的方法,首先实现非晶硅的掺杂效应,就是因为用这种办法制备的非晶硅中含有大量的氢,氢与悬挂键结合大大减少了缺陷态的数目。这些缺陷同时是有效的复合中心。为了提高非平衡载流子的寿命,也必须降低缺陷态密度。因此,控制非晶硅中的缺陷,成为目前材料制备中的关键问题之一。
硫系玻璃中缺陷的形式不是简单的悬挂键,而是“换价对”。最初,人们发现硫系玻璃与非晶硅不同,观察不到缺陷态上电子的自旋共振,针对这表面上的反常现象,莫脱等人根据安德森的负相关能的设想,提出了MDS模型。当缺陷态上占据两个电子时,会引起点阵的畸变,若由於畸变降低的能量超过电子间库仑排斥作用能,则表现出有负的相关能,这就意味著受主能级位於施主能级之下。用 D、D、D 分别代表缺陷上不占有、占有一个、占有两个电子的状态,负相关能意味著:
2D —→ D+D
是放热的。因而缺陷主要以D、D形式存在,不存在未配对电子,所以没有电子的自旋共振。不少人对D、D、D缺陷的结构作了分析。以非晶态硒为例,硒有六个价电子,可以形成两个共价键,通常呈链状结构,另外有两个未成键的 p电子称为孤对电子。在链的端点处相当於有一个中性悬挂键,这个悬挂键很可能发生畸变,与邻近的孤对电子成键并放出一个电子(形成D),放出的电子与另一悬挂键结合成一对孤对电子(形成D),如图 5 硫系玻璃的换价对 所示。因此又称这种D、D为换价对。由於库仑吸引作用,使得D、D通常是成对地紧密靠在一起,形成紧密换价对。硫系玻璃中成键方式只要有很小变化就可以形成一组紧密换价对,如图6 换价对的自增强效应 所示,它只需很小的能量,有自增强效应,因而这种缺陷的浓度通常是很高的。利用换价对模型可以解释硫属非晶态半导体的光致发光光谱、光致电子自旋共振等一系列实验现象。
应用 非晶态半导体在技术领域中的应用存在著很大的潜力,非晶硫早已广泛应用在复印技术中,由S.R.奥夫辛斯基首创的 As-Te-Ge-Si系玻璃半导体制作的电可改写主读存储器已有商品生产,利用光脉冲使碲微晶薄膜玻璃化这种性质制作的光存储器正在研制之中。对於非晶硅的应用目前研究最多的是太阳能电池。非晶硅比晶体硅制备工艺简单,易於做成大面积,非晶硅对於太阳光的吸收效率高,器件只需大约1微米厚的薄膜材料,因此,可望做成一种廉价的太阳能电池,现已受到能源专家的重视。最近已有人试验把非晶硅场效应晶体管用於液晶显示和集成电路

㈡ 研究生学的半导体材料,这个就业前景怎么样主要是从事于什么

就业前景:挺不错的

主要是从事于:本科毕业,可在多晶硅(化工能源公司)、半导回体(电子类答公司)、物理、材料类、无损检测(探伤、压力容器厂家)等行业就业。

研究生毕业,可在材料研究所或高校就业。

㈢ 近年来半导体所毕业后就业情况都怎么样详细点,谢谢。

从2001年开始吧,半导体进入了一个下行阶段,但是这个阶段国内的半导体人才短缺,基本上半版导体的本科权毕业生一毕业就可以很顺利的找到工作。
到了2006年以后,这种现象出现了一些变化,各地半导体工厂犹如雨后春笋般的出现,但是这个时候的半导体人才就像流水线一样的被制造出来,到目前为止基本上能够达到供需平衡的状态!
简单的说,如果你现在是一个半导体专业的本科毕业,就业没什么问题!但是要有竞争力的就业,要硕士或者博士。

㈣ 半导体行业的就业前景好吗

半导体行业是个资金和技术双高密度投入的行业,竞争激烈,准入门槛高,工作压力大,但是产品需求量大,发展前景好,是朝阳产业,高新技术产业,就业前景非常好! 来自职Q用户:李先生

㈤ 半导体物理,半导体材料的就业(专业人士进,在线等)

你好,我是半导体领域的在读博士,半导体也分很多种,不知道你所指的回半导体是哪答方面,Si基的,三五族的还是二六族的,各个方向不太一样的,不过总体来说半导体行业就也还是不错的,还有你的学历不一样也不好说的,本科去一些电子公司,天津北京以及广州深圳,很多的,工资2000-6000不等,博士毕业一万以上吧!

㈥ 半导体材料就业和待遇怎么样 一般多少

视学历、机会而定……

㈦ 半导体行业就业

要说抄半导体行业发展的,目前形势还是比较好的,
上海半导体设计公司很多,尤其集中在张江那一带,比如Marvell,Nvidia,TI,IBM,高通,华为等
目前这个行业中比较缺的人才主要是数字后端方面的,具体数据不是很清楚,但是就从我身边的就业情况看,数字后端的人比较吃香
专业一般都是微电子相关的专业

㈧ 半导体研究生就业前景,和薪金怎样

半导体国家现在大力扶植,应该说前景非常好,半导体是硬件基础,国家不想被卡脖子,现在huawei已经冲在前面,
薪水不用想太多,必然是不错的,可能比不上互联网领域,但比其他行业还是强

㈨ 有学半导体材料方面毕业的研究生吗这个专业以后主要在哪些行业就业薪资待遇怎么样呢

以后就业 可以选择 IC LED mocvd 等相关行业 薪水行业一般6~10k 左右 祝你顺利

㈩ 关于半导体材料或器件方向的就业

错了,材料目前还是很好就业的。关于薪水嘛,要看你从事的什么行业了。不过一内般在一容线城市不会低于5000吧,你当然可以从事芯片设计啊,看你怎么去选择发展的方向。末了,只要你感兴趣,哪个方向都可以,因为两个方向都好就业,只是看你个人有没有这个能力了。

热点内容
三个字的电影名 发布:2024-08-19 09:10:03 浏览:417
台湾红羊经典电影 发布:2024-08-19 09:02:17 浏览:767
搞笑电影范冰冰梁家辉开战 发布:2024-08-19 08:53:18 浏览:917
免费午夜激情 发布:2024-08-19 08:42:15 浏览:831
40分钟左右的英语电影 发布:2024-08-19 08:28:43 浏览:695
电影宋基美娜 发布:2024-08-19 08:27:04 浏览:942
宿舍都变成女的的电影 发布:2024-08-19 07:59:35 浏览:897
台湾恐怖片丧尸 发布:2024-08-19 07:57:21 浏览:179
免费观看qq群 发布:2024-08-19 07:53:00 浏览:921
4级片名字 发布:2024-08-19 07:39:14 浏览:553