常用来做半导体的物质化学式是什么意思
『壹』 常见的半导体材料有什么
半导体材料(semiconctor material)是一类具有半导体性能(导电能力介于导体与绝缘体之间,电阻率约在1mΩ·~1GΩ·cm范围内)、可用来制作半导体器件和集成电路的电子材料。
半导体材料可按化学组成来分,再将结构与性能比较特殊的非晶态与液态半导体单独列为一类。按照这样分类方法可将半导体材料分为元素半导体、无机化合物半导体、有机化合物半导体和非晶态与液态半导体。
元素半导体 在元素周期表的ⅢA族至ⅦA族分布着11种具有半导性的元素,下表的黑框中即这11种元素半导体,其中C表示金刚石。C、P、Se具有绝缘体与半导体两种形态;B、Si、Ge、Te具有半导性;Sn、As、Sb具有半导体与金属两种形态。P的熔点与沸点太低,Ⅰ的蒸汽压太高、容易分解,所以它们的实用价值不大。As、Sb、Sn的稳定态是金属,半导体是不稳定的形态。B、C、Te也因制备工艺上的困难和性能方面的局限性而尚未被利用。因此这11种元素半导体中只有Ge、Si、Se 3种元素已得到利用。Ge、Si仍是所有半导体材料中应用最广的两种材料。
据美国物理学家组织网近日报道,一个国际科研团队首次研制出了一种含巨大分子的有机半导体材料,其结构稳定,拥有卓越的电学特性,而且成本低廉,可被用于制造现代电子设备中广泛使用的场效应晶体管。
科学家们表示,最新研究有望让人造皮肤、智能绷带、柔性显示屏、智能挡风玻璃、可穿戴的电子设备和电子墙纸等变成现实。
在目前的消费市场上,电子产品都很昂贵,主要因为电视机、电脑和手机等电子产品都由硅制成,制造成本很高;而碳基(塑料)有机电子产品不仅制造方便、成本低廉,而且轻便柔韧可弯曲,代表了“电子设备无处不在”这一未来趋势。
以前的研究表明,碳结构越大,其性能越优异。但科学家们一直未曾研究出有效的方法来制造更大的、稳定的、可溶解的碳结构以进行研究,直到此次祖切斯库团队研制出这种新的用于制造晶体管的有机半导体材料。
有机半导体是一种塑料材料,其拥有的特殊结构让其具有导电性。在现代电子设备中,电路使用晶体管控制不同区域之间的电流。科学家们对新的有机半导体材料进行了研究并探索了其结构与电学属性之间的关系。
『贰』 半导体的主要材料是什么
半导体:常温下导电性能介于导体(conctor)与绝缘体(insulator)之间的材料专。
主要材料:
元素半属导体:锗和硅是最常用的元素半导体;
化合物半导体:包括第Ⅲ和第Ⅴ族化合物(砷化镓、磷化镓等)、第Ⅱ和第Ⅵ族化合物( 硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。
技术科研领域:
(1)集成电路
它是半导体技术发展中最活跃的一个领域,已发展到大规模集成的阶段。在几平方毫米的硅片上能制作几万只晶体管,可在一片硅片上制成一台微信息处理器,或完成其它较复杂的电路功能。集成电路的发展方向是实现更高的集成度和微功耗,并使信息处理速度达到微微秒级。
(2)微波器件
半导体微波器件包括接收、控制和发射器件等。毫米波段以下的接收器件已广泛使用。在厘米波段,发射器件的功率已达到数瓦,人们正在通过研制新器件、发展新技术来获得更大的输出功率。
(3)光电子器件
半导体发光、摄象器件和激光器件的发展使光电子器件成为一个重要的领域。它们的应用范围主要是:光通信、数码显示、图象接收、光集成等。
『叁』 常被用做半导体材料的物质是什么
陶瓷、橡胶、干布、干木头、塑料制品、空气、纯净的水、玻璃、经过加工的绝缘油、电木、云母、聚氯乙烯都是绝缘体.
望采纳
『肆』 什么是半导体
半导体( semiconctor),指常温下导电性能介于导体(conctor)与绝缘体(insulator)之间的材料。半导体在收音机、电视机以及测温上有着广泛的应用。
如二极管就是采用半导体制作的器件。半导体是指一种导电性可受控制,范围可从绝缘体至导体之间的材料。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。
今日大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关连。常见的半导体材料有硅、锗、砷化镓等,而硅更是各种半导体材料中,在商业应用上最具有影响力的一种。
分类:
半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。
锗和硅是最常用的元素半导体;化合物半导体包括第Ⅲ和第Ⅴ族化合物(砷化镓、磷化镓等)、第Ⅱ和第Ⅵ族化合物( 硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。
除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。
半导体的分类,按照其制造技术可以分为:集成电路器件,分立器件、光电半导体、逻辑IC、模拟IC、储存器等大类,一般来说这些还会被分成小类。
此外还有以应用领域、设计方法等进行分类,虽然不常用,但还是按照IC、LSI、VLSI(超大LSI)及其规模进行分类的方法。此外,还有按照其所处理的信号,可以分成模拟、数字、模拟数字混成及功能进行分类的方法。
(4)常用来做半导体的物质化学式是什么意思扩展阅读:
发展历史:
半导体的发现实际上可以追溯到很久以前。
1833年,英国科学家电子学之父法拉第最先发现硫化银的电阻随着温度的变化情况不同于一般金属,一般情况下,金属的电阻随温度升高而增加,但巴拉迪发现硫化银材料的电阻是随着温度的上升而降低。这是半导体现象的首次发现。
不久,1839年法国的贝克莱尔发现半导体和电解质接触形成的结,在光照下会产生一个电压,这就是后来人们熟知的光生伏特效应,这是被发现的半导体的第二个特征。
1873年,英国的史密斯发现硒晶体材料在光照下电导增加的光电导效应,这是半导体又一个特有的性质。
半导体的这四个效应,(jianxia霍尔效应的余绩──四个伴生效应的发现)虽在1880年以前就先后被发现了,但半导体这个名词大概到1911年才被考尼白格和维斯首次使用。而总结出半导体的这四个特性一直到1947年12月才由贝尔实验室完成。
在1874年,德国的布劳恩观察到某些硫化物的电导与所加电场的方向有关,即它的导电有方向性,在它两端加一个正向电压,它是导通的;如果把电压极性反过来,它就不导电,这就是半导体的整流效应,也是半导体所特有的第三种特性。同年,舒斯特又发现了铜与氧化铜的整流效应。
很多人会疑问,为什么半导体被认可需要这么多年呢?主要原因是当时的材料不纯。没有好的材料,很多与材料相关的问题就难以说清楚。
参考资料:
网络-半导体
『伍』 常见物质化学式
初中常见物质的化学式:
氧气 O2、
氢气 H2、
氮气 N2、
氯气 Cl2、
氨气 NH3 是碱性气体;无色,但有刺激性气味、
水 H2O 、
一氧化碳 CO 无色无味的气体有毒、
二氧化碳 CO2、
二氧化硫 SO2 无色,但有刺激性气味、
三氧化硫 SO3、
二氧化氮 NO2、
甲烷 CH4 天然气(沼气)的主要成分 、
氧化钙 CaO 俗称 生石灰 白色固体、
氧化镁 MgO 白色固体、
氧化锌 ZnO、
氧化铜 CuO 黑色固体、
氧化汞 HgO 红色固体、
二氧化锰 MnO2 黑色固体、
三氧化二铝 Al2O3、
三氧化二铁 Fe2O3 俗称:赤铁矿石;红色固体、
四氧化三铁 Fe3O4 俗称:磁铁矿石;黑色固体、
五氧化二磷 P2O5 白色固体、
三氧化钨 WO3、
铁锈 主要成分:Fe2O3
过氧化氢 H2O2 无色液体、
盐酸 HCl 无色,但有刺激性气味;、
硝酸 HNO3 具有刺激性气味的液体、
硫酸 H2SO4、
纯净的硫酸是没有颜色、粘稠、油状的液体,不容易挥发。
磷酸 H3PO4、
碳酸 H2CO3不稳定,常温下易分解、
氢硫酸 H2S、
氢氧化钠 NaOH 也叫:苛性钠、火碱、烧碱;白色固体、
氢氧化钾 KOH、也叫苛性钾,白色固体、
氢氧化钙 Ca (OH)2俗称:熟石灰、消石灰,白色固体、
氢氧化镁 Mg(OH) 2、
氢氧化铝 Al(OH)3、
氢氧化铁 Fe(OH)3 红褐色固体、
氢氧化铜 Cu (OH)2 蓝色固体、
氢氧化亚铁 Fe(OH)2、
碳酸钾 K2CO3、
碳酸钙 CaCO3、
碳酸钡 BaCO3、
碳酸铜 CuCO3、
碳酸亚铁 Fe2(CO3)3、
碳酸银 Ag2CO3、
硫酸钠 NaSO4、
硫酸钾 K2SO4、
硫酸钡 BaSO4、
硫酸银 AgSO4、
硫酸钙 CaSO4
硫酸铝 AI2(SO4)3、
硫酸锌 ZeSO4、
硫酸钠 Na2SO4、
硝酸银 AgNO3、
硝酸钡 Ba(NO3)2、
硝酸铜 Cu(NO3)2、
硝酸亚铁 Fe(NO3)2、
硝酸铁 Fe(NO3)3、
氯化银 AgCI、
氯化铜 CuCI2、
氯化钡 BaCI2、
氯化钙 CaCI2、
氯化铝 AICI3、
氯化钾 KCI、
氯化钠 NaCI、
氯化铵 NH4CI、
碳酸氢铵 NH4HCO3、
硫酸铵 (NH4)SO4、
硝酸铵 NH4NO3、
氨水 NH3 .H2O 、
酒精 C2H5OH.、
甲醇 CH3OH、
醋酸 CH3COOH、
碳酸钠晶体 Na2CO3·10H2O、
硫酸铜晶体 俗称:胆矾、蓝矾CuSO4·5H2O 、
硫酸亚铁晶体 俗称:绿矾,皂矾,青矾 FeSO4·7H2O、
氯化钙晶体 CaCl2·6H2O、
硫酸钙晶体 俗称:生石膏 CaSO4·2H2O、
说明:初中结晶水不做要求。
希望对你有所帮助 还望采纳~~
『陆』 半导体的原理是什么
原理:
在极低温度下,半导体的价带是满带(见能带理论),受到热激发后,价带中的部分电子会越过禁带进入能量较高的空带,空带中存在电子后成为导带,价带中缺少一个电子后形成一个带正电的空位,称为空穴。空穴导电并不是实际运动,而是一种等效。
电子导电时等电量的空穴会沿其反方向运动。它们在外电场作用下产生定向运动而形成宏观电流,分别称为电子导电和空穴导电。这种由于电子-空穴对的产生而形成的混合型导电称为本征导电。导带中的电子会落入空穴,电子-空穴对消失,称为复合。
复合时释放出的能量变成电磁辐射(发光)或晶格的热振动能量(发热)。在一定温度下,电子- 空穴对的产生和复合同时存在并达到动态平衡,此时半导体具有一定的载流子密度,从而具有一定的电阻率。温度升高时,将产生更多的电子- 空穴对,载流子密度增加,电阻率减小。
(6)常用来做半导体的物质化学式是什么意思扩展阅读:
半导体的应用
一、在无线电收音机(Radio)及电视机(Television)中,作为“讯号放大器/整流器”用。
二、发展「太阳能(Solar Power)」,也用在「光电池(Solar Cell)」中。
三、半导体可以用来测量温度,测温范围可以达到生产、生活、医疗卫生、科研教学等应用的70%的领域,有较高的准确度和稳定性,分辨率可达0.1℃,甚至达到0.01℃也不是不可能,线性度0.2%,测温范围-100~+300℃,是性价比极高的一种测温元件。
四、半导体致冷器的发展, 它也叫热电致冷器或温差致冷器, 它采用了帕尔贴效应。