硫化铋纳米棒是什么半导体
㈠ 大师,劳驾:半导体致冷晶棒是什么东西,作用是什么,怎么用,主要用途是什么
半导体制冷器(TE)也叫热电制冷器,是一种热泵,它的优点是没有滑动部件,应用在一些空间受到限制,可靠性要求高,无致冷剂污染的场合。
半导体制冷器的工作运转是用直流电流,它既可致冷又可加热,通过改变直流电流的极性来决定在同一制冷器上实现致冷或加热,这个效果的产生就是通过热电的原理,它由两片陶瓷片组成,其中间有N型和P型的半导体材料(碲化铋),这个半导体元件在电路上是用串联形式连结组成。
半导体致冷法的原理以及结构:半导体致冷器是由半导体所组成的一种冷却装置,於1960左右才出现,然而其理论基础Peltier effect可追溯到19世纪。如图是由X及Y两种不同的金属导线所组成的封闭线路。通上电源之后,冷端的热量被移到热端,导致冷端温度降低,热端温度升高,这就是著名的Peltier effect。这现象最早是在1821年,由一位德国科学家Thomas Seeback首先发现,不过他当时做了错误的推论,并没有领悟到背后真正的科学原理。到了1834年,一位法国表匠,同时也是兼职研究这现象的物理学家Jean Peltier,才发现背后真正的原因,这个现象直到近代随著半导体的发展才有了实际的应用,也就是[致冷器]的发明(注意,这种叫致冷器,还不叫半导体致冷器)
它是由许多N型和P型半导体之颗粒互相排列而成,而N P之间以一般的导体相连接而成一完整线路,通常是铜、铝或其他金属导体,最后由两片陶瓷片像夹心饼乾一样夹起来,陶瓷片必须绝缘且导热良好.N型半导体,任何物质都是由原子组成,原子是由原子核和电子组成。电子以高速度绕原子核转动,受到原子核吸引,因为受到一定的限制,所以电子只能在有限的轨道上运转,不能任意离开,而各层轨道上的电子具有不同的能量(电子势能)。离原子核最远轨道上的电子,经常可以脱离原子核吸引,而在原子之间运动,叫导体。如果电子不能脱离轨道形成自由电子,故不能参加导电,叫绝缘体。半导体导电能力介于导体与绝缘体之间,叫半导体。半导体重要的特性是在一定数量的某种杂质渗入半导体之后,不但能大大加大导电能力,而且可以根据掺入杂质的种类和数量制造出不同性质、不同用途的半导体。将一种杂质掺入半导体后,会放出自由电子,这种半导体称为N型半导体。P型半导体,是靠“空穴”来导电。在外电场作用下“空穴”流动方向和电子流动方向相反,即“空穴”由正板流向负极,这是P型半导体原理。载流子现象:N型半导体中的自由电子,P型半导体中的“空穴”,他们都是参与导电,统称为“载流子”,它是半导体所特有,是由于掺入杂质的结果。
半导体制冷材料:不仅需要N型和P型半导体特性,还要根据掺入的杂质改变半导体的温差电动势率,导电率和导热率使这种特殊半导体能满足制冷的材料。目前国内常用材料是以碲化铋为基体的三元固溶体合金,其中P型是Bi2Te3—Sb2Te3,N型是Bi2Te3—Bi2Se3,采用垂直区熔法提取晶体材料。
㈡ 什么是半导体纳米晶体
半纳米晶体指纳米尺寸上的晶体材料,或具有晶体结构的纳米颗粒。纳米晶专体具有很重要的研究价值。属纳米晶体的电学和热力学性质显现出很强的尺寸依赖性,从而可以通过细致的制造过程来控制这些性质。纳米晶体能够提供单体的晶体结构,通过研究这些单体的晶体结构可以提供信息来解释相似材料的宏观样品的行为,而不用考虑复杂的晶界和其他晶体缺陷。尺寸小于10纳米的半导体纳米晶体通常被称为量子点。
纳米晶体制作的光电池具有便宜高效的特点
㈢ 什么是基于半导体材料,采用微米级甚至纳米级加工工艺制造
微电子技术
㈣ 半导体是什么
半导体
锗、硅、硒、砷化镓及许多金属氧化物和金属硫化物等物体,它们的导电能力回介于导体和绝答缘体之间,叫做半导体。
半导体具有一些特殊性质。如利用半导体的电阻率与温度的关系可制成自动控制用的热敏元件(热敏电阻);利用它的光敏特性可制成自动控制用的光敏元件,像光电池、光电管和光敏电阻等。
半导体还有一个最重要的性质,如果在纯净的半导体物质中适当地掺入微量杂质测其导电能力将会成百万倍地增加。利用这一特性可制造各种不同用途的半导体器件,如半导体二极管、三极管等。
把一块半导体的一边制成P型区,另一边制成N型区,则在交界处附近形成一个具有特殊性能的薄层,一般称此薄层为PN结。图中上部分为P型半导体和N型半导体界面两边载流子的扩散作用(用黑色箭头表示)。中间部分为PN结的形成过程,示意载流子的扩散作用大于漂移作用(用蓝色箭头表示,红色箭头表示内建电场的方向)。下边部分为PN结的形成。表示扩散作用和漂移作用的动态平衡。
㈤ 现在所知的新材料有哪些比如说纳米什么的。.谢谢..
纳米材料按结构可以分为零维,一维,以及二维结构。零维主要是指纳米颗粒内,如贵金属纳米粒容子、半导体胶体量子点材料;一维包括纳米线、纳米棒、纳米管;二维材料主要是指超薄膜、多层膜,如石墨烯。此外在纳米材料中还有另一类尺度划分在1~10nm的准零维纳米材料,称为量子点。
㈥ 半导体工艺技术中的纳米是指什么的单位
纳米工艺是讲两晶体间的距离.距离越小就代半导体越小。这样就越容易发热
纳米器件:给信息技术带来革命
纳米科技的另一主要研究领域是设计、制备新型纳米结构和纳米器件。就像30年前,微电子器件取代真空电子管器件给信息技术带来革命一样,纳米结构将再次给信息技术带来革命。
把自由运动的电子囚禁在一个小的纳米颗粒内,或者在一根非常细的短金属线内,线的宽度只有几个纳米,会发生十分奇妙的事情。由于颗粒内的电子运动受到限制,原来可以在费米动量以下连续具有任意动量的电子状态,变成只能具有某动量值,也就是电子动量或能量被量子化了。自由电子能量量子化的最直接的结果表现在:当在金属颗粒的两端加上合适电压,金属颗粒导电;而电压不合适时,金属颗粒不导电。这样一来,原来在宏观世界内奉为经典的欧姆定律在纳米世界内就不再成立了。还有一种奇怪的现象,当金属颗粒具有了负电性,它的库仑力足以排斥下一个电子从外电路进入金属颗粒内,从而切断了电流的连续性。这使得人们想到是否可以发展用一个电子来控制的电子器件,即所谓单电子器件。单电子器件的尺寸很小,把它们集成起来做成电脑芯片,电脑的容量和计算速度不知要提高多少倍。然而,事情可不是人们想像的那么简单。实际上,被囚禁的电子可不那么"老实",按照量子力学的规律,有时它可以穿过"监狱"的"墙壁"逃逸出来,这会使芯片的动作不可控制,同时还需要新的设计使单电子器件变成集成电路。所以尽管电子器件已经在实验室里得以实现,但是真要用在工业上还需要时间。
被囚禁在小尺寸内的电子的另一种贡献,是会使材料发出强的光。"量子点列激光器"或"级联激光器"的尺寸极小,但发光的强度很高,用很低的电压就可以驱动它们发生蓝光或绿光,用来读写光盘可使光盘的存贮密度提高几倍。如果用"囚禁"原子的小颗粒量子点来存贮数据,制成量子磁盘,存贮度可提高成千上万倍,会给信息存贮的技术带来一场革命。
纳米是尺寸或大小的度量单位,是一米的十亿分之一(千米→米→厘米→毫米→微米→纳米), 4倍原子大小,万分之一头发粗细。纳米技术是是指制造体积不超过数百个纳米的物体,其宽度相当于几十个原子聚集在一起。
㈦ 半导体收音机中的中波棒采用的是什么
半导体收音机中的中波棒采用的是:
软磁铁氧体是由三氧化二铁和一种专或几种其他金属氧化物属(例如:氧化镍、氧化锌、氧化锰、氧化镁、氧化钡、氧化锶等)配制烧结而成。之所以称之为软磁,是因为当充磁磁场消失后,残留磁场很小或几乎没有。通常用作扼流圈,或中频变压器的磁芯。这和永磁铁氧体是完全不同的
㈧ 单晶硅棒是什么
名 称: 单晶硅
英文名: Monocrystalline silicon
分子式: Si
硅的单晶体。具有基本完整的点阵结构的晶体。不同的方向具有不同的性质,是一种良好的半导材料。纯度要求达到99.9999%,甚至达到99.9999999%以上。用于制造半导体器件、太阳能电池等。用高纯度的多晶硅在单晶炉内拉制而成。
熔融的单质硅在凝固时硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则这些晶粒平行结合起来便结晶成单晶硅。单晶硅具有准金属的物理性质,有较弱的导电性,其电导率随温度的升高而增加,有显著的半导电性。超纯的单晶硅是本征半导体。在超纯单晶硅中掺入微量的ⅢA族元素,如硼可提高其导电的程度,而形成p型硅半导体;如掺入微量的ⅤA族元素,如磷或砷也可提高导电程度,形成n型硅半导体。单晶硅的制法通常是先制得多晶硅或无定形硅,然后用直拉法或悬浮区熔法从熔体中生长出棒状单晶硅。单晶硅主要用于制作半导体元件。
用途: 是制造半导体硅器件的原料,用于制大功率整流器、大功率晶体管、二极管、开关器件等
单晶硅是一种比较活泼的非金属元素,是晶体材料的重要组成部分,处于新材料发展的前沿。其主要用途是用作半导体材料和利用太阳能光伏发电、供热等。由于太阳能具有清洁、环保、方便等诸多优势,近三十年来,太阳能利用技术在研究开发、商业化生产、市场开拓方面都获得了长足发展,成为世界快速、稳定发展的新兴产业之一。
单晶硅建设项目具有巨大的市场和广阔的发展空间。在地壳中含量达25.8%的硅元素,为单晶硅的生产提供了取之不尽的源泉。
近年来,各种晶体材料,特别是以单晶硅为代表的高科技附加值材料及其相关高技术产业的发展,成为当代信息技术产业的支柱,并使信息产业成为全球经济发展中增长最快的先导产业。单晶硅作为一种极具潜能,亟待开发利用的高科技资源,正引起越来越多的关注和重视。
㈨ 纳米半导体ZnS的带隙(能隙)是多少上下值各是多少
ZnS是一种直接抄带隙的半袭导体材料,具有闪锌矿和纤锌矿两种结构,禁带宽度为3.6~3.8eV,它具有良好的光电性能,广泛应用于各种光学和光电器件中,如薄膜电致发光显示器件、发光二极管、紫外光探测器件、太阳能电池等。传统的化合物薄膜太阳能电池,一般采用化学浴法制备的CdS薄膜作为缓冲层材料,并且已经获得了较高的电池转换效率。后来人们逐渐意识到CdS是一种对环境和人体有害的材料,要研究制备无污染的太阳能电池就该寻找新的材料作为替代。在以后的研究中人们慢慢发现ZnS是替代CdS的良好的材料。首先,ZnS不含任何有毒元素,满足了人们环保的要求;其次,ZnS(3.6~3.8eV)的禁带宽度比CdS(2.4eV)大得多,用它作缓冲层材料可以使更多的短波区的光照射到吸收层上,有利于获得蓝光区的光谱响应,提高太阳能电池的转换效率。Cu(InGa)Se2/ZnS结构电池转换效率已经达到18.6%,而CuInS2/ZnS结构电池转换效率也已达到了10.7%。(CuInS2是I-III-vI)族化合物中最理想的吸收层材料,其理论光电转换效率为27%--32%)希望你能满意!
㈩ 半导体中,晶锭 晶棒有什么区别
晶棒是指整个的单晶硅,因为单晶硅棒的制作是用直拉法 区熔法制作完成的,其成品均为棒状,故称为晶棒,也有将单晶硅称作晶锭的,但很少。大多数晶锭是指多晶硅块。