半导体材料有哪些哪些是重金属离子
㈠ 常见重金属吸附材料有哪些
常见重金属吸附材料及效果
1 无机吸附剂
1.1 沸石
沸石是一种孔径均匀、比表面积大、价格低廉的高效吸附材料,广泛应用于各研究领域中,包括天然沸石、斜发沸石、方沸石等。我国的天然沸石资源丰富,河北、内蒙古、山西的储量占全国的 45%,其余主要分布在东北、山东、安徽、江苏和浙江等地。Omar等探究了3种廉价吸附剂(天然沸石、粉煤灰、花生壳木炭)对Cu2+和Zn2+的吸附行为,得出最佳的吸附条件,实验表明:天然沸石是3种吸附剂中吸附能力最强的材料,其最适pH值为6,吸附达到平衡时所需时间为3 h。
1.2 硅藻土
硅藻土是一种生物成因的硅质沉积岩,其主要成分是SiO2,还含有少量的金属氧化物,因其孔隙度大、稳定性强、吸收性好等特点,常被用于涂料、油漆、污水处理等行业。早在十几年前,研究人员就开始研究硅藻土的吸收性能。
1.3 其它无机吸附剂
还有一些无机矿物也是常用的高效吸附材料,例如其它分子筛、高岭土等,对这些矿物进行改性,也可提高矿物的吸附效率。
2 有机(高分子)吸附剂
2.1 纤维类吸附剂
纤维类吸附材料分子内有很多羟基基团,且具有多孔的特性,它的吸附性能早已受到研究人员的关注,并且关于此类吸附剂的研究也愈来愈多,目前,研究人员通过对其进行化学改性,使其吸附效率提高。傅伟昌以棉纤维为原料制备甜菜碱型两性化纤维素,探讨其合成途径的相关影响因素,并研究产物Cr2O72-,Mn2+,Cu2+的吸附性能,结果表明:重金属离子溶液的pH值对离子的去除效果有较大影响,在pH值为5.8时,对Cr2O72-有较好的吸附能力;在pH值为7.0时,对Mn2+,Cu2+有较好的吸附能力;即该制备产物对金属阴、阳离子均有吸附效用。
2.2 树脂类吸附剂
树脂类吸附剂在重金属水处理方面的应用比较广泛,研究表明:用树脂材料处理重金属废水具有高效、经济的特点,具有较好的发展前景,但合成新型离子交换树脂的过程需要进一步优化,同时还发现,改性后的离子交换树脂有更高的吸附效率。高吸水树脂因其高吸水能力,且在高温高压下的高保水能力,成为一种迅速发展起来的有机吸附材料。
2.3 壳聚糖类吸附剂
壳聚糖是一种天然高分子材料,对许多物质具有螯合吸附作用,其分子中的氨基和相邻的羟基能与许多金属离子(如Hg2+,Ni2+,Cu2+,Pb2+等)形成稳定的螯合物,多用于治理重金属废水、净化自来水及在湿法冶金中分离金属离子等。
2.4 其它高分子吸附剂
有些高分子吸附材料虽然研究较少,但其吸附效果是很可观的,且引导了处理重金属废水的新型高分子吸附材料的研发与应用。
3 碳质吸附剂
碳质吸附剂中,运用最多的就是活性炭,活性炭本身具有特殊的孔隙结构,因此,可以高效地吸附重金属离子。研究5种物理吸附剂(活性炭、人造沸石草石灰、炉灰、木炭)对重金属的吸附效果,探讨pH值、吸附剂加入量和振荡时间等因素对吸附效果的影响,结果表明:在一定pH值吸附剂加入量和振荡时间下,5种物理吸附剂对6种重金属(Pb,Cd,Mn,Zn,Cr,Ni)均有较好的吸附效果,其中活性炭对Pb,Ni和Cr的吸附率最大,分别达到100%,94.42%和100%。各影响因素对不同吸附剂吸附重金属的影响能力基本表现为,pH值>吸附剂加入量>振荡时间;活性炭、木炭和草木灰对重金属废水的最佳吸附条件为,吸附剂加人量40 g/L,pH值l0 ~ 10.5,振荡时间180 min。从各组数据中也可得出:活性炭对重金属的综合吸附能力要强于其它几种。
㈡ 重金属离子包括哪些
重金属离子主要是Cr6+、U6+、Te3+、Co3+、Se6+、Pu3+、Hg2+,Mn4+等
备注:重金属,特别是汞、镉、铅、铬等具有显著内和生物毒容性。它们在水体中不能被微生物降解,而只能发生各种形态相互转化和分散、富集过程(即迁移)。
㈢ 常见重金属离子有那些
Hg2+,Pb2+,Cd2+
测定的活……忘了……后两个都是用EDTA配位滴定……
㈣ 常见的半导体材料有哪些
晶体硅,晶体锗
㈤ 什么是重金属离子
铅、钴、镍、镉、汞、钨、钼、金,属于对生命体有害的重金属。能固定蛋白质的重金属。
㈥ 什么是重金属离子
就是重复金属元素对应制的离子啊
重金属指比重大于5的金属(一般指密度大于4.5克每立方厘米的金属).重金属指的是原子量大于55的金属.如铁的原子量为56,大于55,故也是重金属.重金属约有45种,一般都是属于过渡元素.如铜、铅、锌、铁、钴、镍、锰、镉、汞、钨、钼、金、银等.尽管锰、铜、锌等重金属是生命活动所需要的微量元素,但是大部分重金属如汞、铅、镉等并非生命活动所必须,而且所有重金属超过一定浓度都对人体有毒.另外、砷虽不属于重金属,但因其来源以及危害都与重金属相似,故通常列入重金属类进行研究、讨论.
一般讨论重金属离子的时候都是讨论废水
㈦ 半导体材料有哪些
在可预见的将来,单晶硅仍是电子工业的首选材料,但砷化镓这位半导体家族新秀已迅速成长为仅次于硅的重要半导体电子材料。砷化镓在当代光电子产业中发挥着重要的作用,其产品的50%应用在军事、航天方面,30%用于通信方面,其余的用于计算机和测试仪器。
砷化镓材料的特殊结构使其具备吸引人的优良特性。根据量子力学原理,电子的有效质量越小,它的运动速度就越快,而砷化镓中电子的有效质量是自由电子质量的1/15,只有硅电子的1/3。用砷化镓制成的晶体管的开关速度,比硅晶体管快1~4倍,用这样的晶体管可以制造出速度更快、功能更强的计算机。因为砷化镓的电子运动速度很高,用它可以制备工作频率高达1010赫兹的微波器件,在卫星数据传输、通信、军用电子等方面具有关键性作用。实际上,以砷化镓为代表的Ⅲ—Ⅳ族半导体,其最大特点是其光电特性,即在光照或外加电场的情况下,电子激发释放出光能。它的光发射效率比其他半导体材料高,用它不仅可以制作发光二极管、光探测器,还能制作半导体激光器,广泛应用于光通信、光计算机和空间技术,开发前景令人鼓舞。
与任何半导体材料一样,砷化镓材料对于杂质元素十分敏感,必须精细纯化。和硅、锗等元素半导体不同的是它还要确保准确的化学配比,否则将影响材料的电学性质。
基于以上原因,砷化镓单晶的制备工艺复杂,成本高昂。我国曾在人造卫星上利用微重力条件进行砷化镓单晶的生长,取得了成功。此外,薄膜外延生长技术,可以精确控制单晶薄膜的厚度和电阻率,在制备半导体材料和器件中越来越受到重视。
短短十几年,仅美国研究和开发的砷化镓产品已逾千种。根据90年代末国际砷化镓集成电路会议的预测,砷化镓集成电路的市场销售额将每年翻一番,形成数十亿美元的规模。砷化镓及其代表的Ⅲ—Ⅳ族化合物半导体家族均身怀绝技,有待于进一步开发。
㈧ 什么是重金属离子
重金属指比重大于5的金属,(一般指密度大于4.5克每立方厘米的金属)约有45种,如铜、铅、锌、铁、钴、镍、锰、镉、汞、钨、钼、金、银等。尽管锰、铜、锌等重金属是生命活动所需要的微量元素,但是大部分重金属如汞、铅、镉等并非生命活动所必须,而且所有重金属超过一定浓度都对人体有毒。
如汞中毒的临床表现有,全身症状为头痛、头昏、乏力、发热。口腔及消化道症状表现为齿龈红肿酸痛、糜烂出血、牙齿松动、龈槽溢脓,口腔有臭味,并有恶心、呕吐、食欲不振、腹痛、腹泻。皮肤接触可出现红色斑丘疹,以四肢及头面部分布较多。少数患者可有肾损害,个别严重者可有咳嗽、胸痛、呼吸困难、绀紫等急性间质性肺炎的表现。
重金属中毒会使体内的蛋白质凝固,这个你可以从高三的化学书看到,如果轻微中毒,就大量喝牛奶,牛奶中的蛋白质会和重金属反应,这样不会损伤到你自身的身体机能,喝了以后马上就医。
对什么是重金属,目前尚没有严格的统一定义,在环境污染方面所说的重金属主要是指汞(水银)、镉、铅、铬以及类金属砷等生物毒性显著的重元素。重金属不能被生物降解,相反却能在食物链的生物放大作用下,成千百倍地富集,最后进入人体。重金属在人体内能和蛋白质及酶等发生强烈的相互作用,使它们失去活性,也可能在人体的某些器官中累积,造成慢性中毒。
重金属元素由于某些原因未经处理就被排入河流、湖泊或海洋,或者进入了土壤中,使得这些河流、湖泊、海洋和土壤受到污染,它们不能被生物降解。鱼类或贝类如果积累重金属而为人类所食,或者重金属被稻谷、小麦等农作物所吸收被人类食用,重金属就会进入人体使人产生重金属中毒,轻则发生怪病(水俣病、骨痛病等),重者就会死亡。所以我们不要过量地进食海产,每次进食前一定要把海产彻底煮熟,以免吃入细菌。