半导体内部的载流子有什么
Ⅰ 半导体材料中有哪些载流子输运机制
半导体材料是一类具有半导体性能、可用来制作半导体器件和集成电的电子材料,其电导率在10(U-3)~10(U-9)欧姆/厘米范围内。半导体材料是一类具有半导体性能、可用来制作半导体器件和集成电的电子材料,其电导率在10(U-3)~10(U-9)欧姆/厘米范围内。正是利用半导体材料的这些性质,才制造出功能多样的半导体器件。半导体材料是半导体工业的基础,它的发展对半导体技术的发展有极大的影响。
图1、 半导体材料图半导体材料分类半导体材料按化学成分和内部结构,大致可分为以下几类。1、化合物半导体由两种或两种以上的元素化合而成的半导体材料。它的种类很多,重要的有砷化镓、磷化锢、锑化锢、碳化硅、硫化镉及镓砷硅等。其中砷化镓是制造微波器件和集成电的重要材料。碳化硅由于其抗辐射能力强、耐高温和化学稳定性好,在航天技术领域有着广泛的应用。3.无定形半导体材料 用作半导体的玻璃是一种非晶体无定形半导体材料,分为氧化物玻璃和非氧化物玻璃两种。这类材料具有良好的开关和记忆特性和很强的抗辐射能力,主要用来制造阈值开关、记忆开关和固体显示器件。2、元素半导体有锗、硅、硒、硼、碲、锑等。50年代,锗在半导体中占主导地位,但 锗半导体器件的耐高温和抗辐射性能较差,到60年代后期逐渐被硅材料取代。用硅制造的半导体器件,耐高温和抗辐射性能较好,特别适宜制作大功率器件。因此,硅已成为应用最多的一种增导体材料,目前的集成电路大多数是用硅材料制造的。3、有机增导体材料已知的有机半导体材料有几十种,包括萘、蒽、聚丙烯腈、酞菁和一些芳香族化合物等,目前尚未得到应用 。半导体材料的特性参数对于材料应用甚为重要。因为不同的特性决定不同的用途。
图2、半导体元件
半导体材料特性
半导体材料的导电性对某些微量杂质极敏感。纯度很高的半导体材料称为本征半导体,常温下其电阻率很高,是电的不良导体。在高纯半导体材料中掺入适当杂质后,由于杂质原子提供导电载流子,使材料的电阻率大为降低。这种掺杂半导体常称为杂质半导体。杂质半导体靠导带电子导电的称N型半导体,靠价带空穴导电的称P型半导体。不同类型半导体间接触(构成PN结)或半导体与金属接触时,因电子(或空穴)浓度差而产生扩散,在接触处形成位垒,因而这类接触具有单向导电性。利用PN结的单向导电性,可以制成具有不同功能的半导体器件,如二极管、三极管、晶闸管等。此外,半导体材料的导电性对外界条件(如热、光、电、磁等因素)的变化非常敏感,据此可以制造各种敏感元件,用于信息转换。半导体材料的特性参数有禁带宽度、电阻率、载流子迁移率、非平衡载流子寿命和位错密度。禁带宽度由半导体的电子态、原子组态决定,反映组成这种材料的原子中价电子从束缚状态激发到自由状态所需的能量。电阻率、载流子迁移率反映材料的导电能力。
Ⅱ 请问什么叫做载流子
在物理学中,载流子指可以自由移动的带有电荷的物质微粒,如电子和离子。在半导体物理学中,电子流失导致共价键上留下的空位(空穴[1])被视为载流子。金属中为电子,半导体中有两种载流子即电子和空穴。
在电场作用下能作定向运动的带电粒子。如半导体中的自由电子与空穴,导体中的自由电子,电解液中的正、负离子,放电气体中的离子等。
"载流子" 在学术文献中的解释:
1、不论是N型半导体中的自由电子,还是P型半导体中的空穴,它们都参与导电,统称为“载流子”.“载流子”导电是半导体所特有的
2、关于气体导电众所周知,导体之所以容易导电,是因为“导体中存在大量的可以自由移动的带电物质微粒,称为载流子.在外电场的作用下,载流子作定向运动,形成明显的电流”
在半导体中载运电流的带电粒子——电子和空穴,又称自由载流子。在一定温度下,半导体处于热平衡状态,半导体中的导电电子浓度n0和空穴浓度p0都保持一个稳定的数值,这种处于热平衡状态下的导电电子和空穴称为热平衡载流子。
在本征半导体中只发生热激发时,电子数目等于空穴数目,这时热平衡载流子浓度为
式中m0为电子质量,kg;mn*为电子有效质量,kg; mp*为空穴有效质量,kg;k为玻耳兹曼常数,J/K;Eg为禁带宽度,eV;ni为本征载流子浓度,cm-3;T为绝对温度,K。
对于杂质半导体,N型半导体中的电子和P型半导体中的空穴称为多数载流子(简称多子),而N型半导体中的空穴和P型半导体中的电子称为少数载流子(简称少子)。在强电离的情况下,N型半导体中多子浓度nn及少子浓度pn分别为
P型半导体中多子浓度pp及少子浓度np分别为
上二式中ND为施主杂质浓度,cm-3;NA为受主杂质浓度,cm-3。
如果对半导体施加外界作用(如用光的或电的方法),破坏了热平衡条件,使半导体处于与热平衡状态相偏离的状态,则称为非平衡状态。处于非平衡状态的半导体,其载流子比平衡状态时多出来的那一部分载流子称为非平衡载流子。在N型半导体中,把非平衡电子称为非平衡多数载流子,非平衡空穴称为非平衡少数载流子。对P型半导体则相反。在半导体器件中,非平衡少数载流子往往起着重要的作用。
载流子寿命 life time of carriers
非平衡载流子在复合前的平均生存时间,是非平衡载流子寿命的简称。在热平衡情况下,电子和空穴的产生率等于复合率,两者的浓度维持平衡。在外界条件作用下(例如光照),将产生附加的非平衡载流子,即电子—空穴对;外界条件撤消后,由于复合率大于产生率,非平衡载流子将逐渐复合消失掉,最后回复到热平衡态。非平衡载流子浓度随时间的衰减规律一般服从exp(-t/τ)的关系,常数τ表示非平衡载流子在复合前的平均生存时间,称为非平衡载流子寿命。在半导体器件中,由于非平衡少数载流子起主导作用,因此τ常称为非平衡少数载流子寿命,简称少子寿命。τ值范围一般是10-1~103μs。复合过程大致可分为两种:电子在导带和价带之间直接跃迁,引起一对电子—空穴的消失,称为直接复合;电子—空穴对也可能通过禁带中的能级(复合中心)进行复合,称为间接复合。每种半导体的r并不是取固定值,将随化学成分和晶体结构的不同而大幅度变化,因此,寿命是一种结构灵敏参数。τ值并不总是越大越好。对于Si单晶棒和晶体管的静态特性来说,希望τ值大些。但是,对于在高频下使用的开关管,却往往需要掺杂(扩散金),以增加金杂质复合中心,降低τ值,提高开关速度。近年来,在电力电子器件生产中,常用电子束辐照代替掺金,降低τ值。在Si和GaAs材料、器件和集成电路生产过程中,τ值是必须经常检测的重要参数。
Ⅲ 导体中的,导电的载流子是什么
导体中的,导电的载流子是自由电子。
导体导电是导体中的自由电荷定向移回动的结果,这些可以答移动的电荷又叫载流子,例如金属导体中的载流子就是自由电子.
载流子指可以自由移动的带有电荷的物质微粒,如电子和离子。在半导体物理学中,电子流失导致共价键上留下的空位(空穴引)被视为载流子;金属中为电子,半导体中有两种载流子即电子和空穴;在电场作用下能作定向运动的带电粒子,如半导体中的自由电子与空穴,导体中的自由电子,电解液中的正、负离子,放电气体中的离子等。
Ⅳ 在半导体中存在哪两种载流子
本征载流子就是本征半导体中的载流子,即
电子
和
空穴
,即不是由掺杂所产生出来的载流子。也就是说,内本征载流子是由热激发——本征激发所产生出来的,即是价电子从价带跃迁到导带而产生出来的;它们是成对产生的,所以电子和空容穴的浓度始终相等。
本征半导体,从物理本质上来说,也就是两种载流子数量相等、都对导电起同样大小的半导体。因此,未掺杂的半导体是本征半导体,但是掺有杂质的半导体在一定条件下也可能成为本征半导体(只要两种载流子的浓度相等)。
对于掺有杂质的n型或p型半导体,其中的多数载流子主要就是由杂质电离所提供,而其中的少数载流子则是由本征激发所产生的。因此,在杂质全电离情况下,多数载流子浓度基本上与温度无关,但少数载流子则随着温度将指数式增大。
Ⅳ 半导体中有哪两种载流子
有电子和空穴两种载流子
Ⅵ N型半导体中的载流子是什么
P型半导体中多数载流子是空穴,N型半导体中多数载流子电子,硅二极管的正向导通压降约0.7v。是多少
Ⅶ 半导体载流子的分类
多数载流子与少数载流子
载流子可区分为多数载流子和少数载流子两种。譬如,对于n型半导体,其中的电子就是多数载流子,而空穴是少数载流子。实际上,这不仅是数量多少的差异,而更重要的是它们性质上的不同。例如:
①多数载流子主要由掺杂所提供的,则在室温下,其浓度与温度的关系不大(杂质全电离),而少数载流子主要由本征激发所产生,则随着温度的升高将指数式增加;
②能够注入到半导体中去的载流子,或者能够从半导体中抽出来的载流子,实际上往往是少数载流子,而多数载流子一般是不能注入、也不能抽出的;
③少数载流子能够在局部区域积累或减少,即可形成一定的浓度梯度,而多数载流子在半导体内部难以积累起来,所以多数载流子的浓度一般都不能改变,从而不能形成浓度梯度。也正因为如此,为了维持半导体电中性,所以在注入了少数载流子的同时,也将增加相同数量的多数载流子,并且它们的浓度梯度也相同;
④因为一般只有少数载流子才能注入和抽出,所以半导体中的非平衡载流子一般也就是少数载流子。非平衡少数载流子可由于复合而消失,因此具有一定的寿命时间(从ns到μs),而多数载流子一般就是热平衡载流子,其存在的有效时间也就是所谓介电弛豫时间(非常短,常常可忽略);
⑤少数载流子在浓度梯度驱动下,将一边扩散、一边复合,有一个有效存在的范围——扩散长度(可达nm数量级),而多数载流子的有效存在范围是所谓Debye屏蔽长度(很短);
⑥少数载流子主要是扩散运动,输运电荷的能力决定于其浓度梯度,而多数载流子主要是漂移运动,输运能力主要是决定于多数载流子浓度和电场;等等。
(4)少数载流子的作用:
少数载流子虽然数量少,但是它所产生的电流却不一定小,其主要原因就是它们能够产生很大的浓度梯度,从而可输运很大的电流。例如数百安培工作电流的SCR就是少数载流子工作的器件,所有BJT 就都是少数载流子工作的器件。相反,多数载流子工作的器件,其电流倒不一定很大。
少数载流子能够存储(积累),则对于器件的开关速度有很大影响;而多数载流子的电容效应(势垒电容)往往是影响器件最高工作频率的因素。
Ⅷ 在半导体中,不仅有什么载流子,还有什么载流子
如果从载流子浓度或掺杂角度说,可分为多数载流子(多子)和少数载流版子(少子)权;
如果从载流子离域性的角度说,可分为自由载流子(free charge carrier或delocalized charge carrier)和俘获态载流子(trapped charge carrier或localized charge carrier)
Ⅸ 半导体内部的载流子有几种运动方式,怎样才能形成电流
半导体内的载流子有三种运动:载流子的扩散运动,载流子的热运动和载流子的漂移运动。
(1)热运动
在没有任何电场作用时,一定温度下半导体中的自由电子和空穴因热激发所产生的运动是杂乱无障的,好像空气中气体的分子热运动一样。由于是无规则的随机运动,合成后载流子不产生定向位移,从而也不会形成电流。
(2)漂移运动
在半导体的两端外加一电场E,载流子将会在电场力的作用下产生定向运动。电子载流子逆电场方向运动,而空穴载流子顺着电场方向运动。从而形成了电子电流和空穴电流,它们的电流方向相同。所以,载流子在电场力作用下的定向运动称为漂移运动,而漂移运动产生的电流称漂移电流。
(3)扩散运动
在半导体中,载流子会因浓度梯度产生扩散。如在一块半导体中,一边是N型半导体,另一边是P型半导体,则N型半导体一边的电子浓度高,而P型半导体一边的电子浓度低。反之,空穴载流子是P型半导体一边高,而N型半导体一边低。由于存在载流子浓度梯度而产生的载流子运动称为扩散运动。
滴入水中的墨水会快速地向四周扩散,打开药品瓶盖,气味会很快充满整个房间等现象,是现实生活中扩散运动的典型例子,是自然界中的一种普遍规律。
由于电子载流子和空穴载流子分别带负电和正电,扩散运动导致正负电荷搬迁,从而形成电流,这种由扩散运动形成的电流称扩散电流。
Ⅹ N 型半导体中的载流子是什么
“多数”载流子-----电子。“少数”载流子-----空穴。