半导体产业有哪些
『壹』 西安半导体行业都有哪些
集成电路设计企业:
1、英飞凌科技(西安)有限公司
2.西安亚同集成电路技术有限公司
3.西安深亚电子有限公司
4.西安联圣科技有限公司
5.西安中芯微电子技术有限公司
6.陕西美欧电信技术有限公司
7.西安爱迪信息技术有限公司
8.西安交大数码技术有限责任公司
9.西安大唐电信公司IC设计部
10.西电科大华成电子股份有限公司。
(1)半导体产业有哪些扩展阅读:
半导体分类:
半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。锗和硅是最常用的元素半导体;化合物半导体包括第Ⅲ和第Ⅴ族化合物(砷化镓、磷化镓等)、第Ⅱ和第Ⅵ族化合物( 硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物)。
以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。
半导体的分类,按照其制造技术可以分为:集成电路器件,分立器件、光电半导体、逻辑IC、模拟IC、储存器等大类,一般来说这些还会被分成小类。
此外还有以应用领域、设计方法等进行分类,虽然不常用,但还是按照IC、LSI、VLSI(超大LSI)及其规模进行分类的方法。此外,还有按照其所处理的信号,可以分成模拟、数字、模拟数字混成及功能进行分类的方法。
『贰』 用到半导体的行业有哪些
国内专业做半导体的大厂家有:中芯国际,华虹NEC,宏力,苏州和舰,先进半导体,台基电松江厂
『叁』 什么是半导体产业
全球半导体产业向亚太转移,我国半导体产业融入全球产业链
全球半导体市场规模06年达到247.7亿美元。主要应用领域包括计算机、消费电子、通信等。在电子制造业转移和成本差异等因素的作用下,全球半导体产业向亚太地区转移趋势明显。我国内地半导体产业发展滞后于先进国家,内地企业多位于全球产业链的中下游环节。我国半导体产业成为全球产业链的组成部分,产量和产值提高迅速,但是产品技术含量和附加值偏低。
2007年半导体产业大幅波动,长远发展前景良好
半导体产业的硅周期难以消除。2007年上半年,在内存价格上升等因素作用下,全球半导体市场增速明显下滑。至2007年下半年,由于多余库存的降低、资本支出的控制,半导体市场开始回升。预计2008年,半导体产业增速恢复到一个较高的水平。长远来看,支撑半导体产业发展的下游应用领域仍然处在平稳发展阶段,半导体产业的技术更新也不曾停滞。产品更新与需求形成互动,推动半导体产业持续增长。
我国半导体市场规模增速远快于全球市场
我国半导体市场既受全球市场的影响,也具有自身的运行特点。
我国半导体应用产业中,PC等传统领域仍保持平稳增长,消费电子、数字电视、汽车电子、医疗电子等领域处于快速成长期,3G通信等领域处于成长前期。我国集成电路市场规模增速远快于全球市场,是全球市场增长的重要拉动元素。2006年,我国集成电路市场已经成为全球最大市场。
我国半导体产业规模迅速扩大,产业结构逐步优化
我国半导体产业规模同样快速提高。在封装测试业保持高速增长的同时,设计和制造业的比例逐步提高,产业结构得到优化。在相关管理部门、科研机构和企业的共同努力下,我国系统地开展了标准制定和专利申请工作,有效地保障本土企业从设计、制造等中上游产业链环节分享内地快速增长的电子设备市场。
分立器件、半导体材料行业是我国半导体产业的重要组成部分
集成电路是半导体产业的最大组成部分。分立器件、半导体材料和封装材料也是半导体产业的重要组成部分。我国内地分立器件和半导体材料市场和产业也处于快速增长之中。
上市公司
我国内地半导体产业上市公司面对诸多挑战。技术升级和产品更新是企业生存发展的前提。半导体材料生产企业有较强的定价能力,在保持产品换代的前提下,有较大的成长空间;封装测试公司整体状况较好;分立器件企业发展不均。
全球半导体产业简况
根据WSTS统计,2006年全球半导体市场销售额达2477亿美元,比2005年增长8.9%;产量为5192亿颗,比2005年增长14.0%;ASP为0.477美元,比2005年下降4.5%。
从全球范围来看,包括计算机(Computer)、通信(Communication)、消费电子(ConsumerElectronics)在内的3C产业是半导体产品的最大应用领域,其后是汽车电子和工业控制等领域。
美、日、欧、韩以及中国台湾是目前半导体产业领先的国家和地区。2006年世界前25位的半导体公司全部位于美国、日本、欧洲、韩国。2005年,美国和日本分别占有48%和23%的市场份额,合计达71%。韩国和台湾的半导体产业进步很快。韩国三星已经位列全球第二;台积电(TSMC)的收入在2007年上半年有了很大的提高,排名快速升至第6,成为2007年上半年进入前20名的唯一一家台湾公司,这从一个侧面反映了台湾代工业非常发达。
中国市场简况
中国已经成为全球第一大半导体市场,并且保持较高的增长速度。2006年,中国半导体市场规模突破5800亿,其中集成电路市场达4863亿美元,比2005年增长27.8%,远高于全球市场8.9%的增速。我国市场已经达到全球市场份额的四分之一强。
在市场增长的同时,我国半导体产业成长迅速。以集成电路产业为例,2006年国内生产集成电路355.6亿块,同比增长36.2%。实现收入1006.3亿元,同比增长43.3%。我国半导体产业规模占世界比重还比较低,但远高于全球总体水平的增长率让我们看到了希望。
中国集成电路的应用领域与国际市场有类似之处。2006年,3C(计算机、通信、消费电子)占了全部应用市场的88.5%,高于全球比例。而汽车电子1.3%的比例,比起2005年的1.1%有所提高,仍明显低于全球市场的8.0%。与此相对应的是,我国汽车市场销量呈增长态势,汽车电子国产化比例逐步提高。这说明,在汽车电子等领域,我国集成电路应用仍有较大成长空间。
我国在国际半导体产业中所处地位
我国半导体市场进口率高,超过80%的半导体器件是进口的。国内半导体产业收入远小于国内市场规模。
2006年国内IC市场规模达5800亿,而同期国内IC产业收入是1006.3亿。
我国有多个电子信息产品产量已经位居全球第一,包括台式机、笔记本电脑、手机、数码相机、电视机、DVD、MP3等。中国已超过美国成为世界上最大的集成电路产品应用国。但目前国内企业只能满足不到20%的集成电路产品需求,其他依赖进口。
中国大陆市场的半导体产品前十名的都是跨国公司。这十家公司平均21%的收入来自中国市场。这与中国市场占全球市场规模的比例基本吻合。2006年这十家公司在中国的收入总和占到中国大陆半导体市场规模的34.51%。上述两组数字从另一个侧面反映出跨国公司占有国内较高市场份额。国内半导体市场对进口产品依赖性高。
虽然我国半导体进口量非常大,但出口比例也非常高。2005年国内半导体产品有64%出口。这种现象被称为“大进大出”,主要是由我国产业链特点造成的。
总的来看,我国IC进口远远超过出口。据海关统计,2006年我国集成电路和微电子组件进口额为1035亿美元,出口额为200亿美元,逆差巨大。
由于我国具有劳动力竞争优势,国际半导体企业把技术含量相对较低、劳动密集型的产业链环节向我国转移。我国半导体产业逐渐成为国际产业链的一环。产业链调整和转移的结果是,我国半导体产业在低技术、劳动密集型和低附加值的环节得到了优先发展。2006年,我国IC设计、制造和封装测试业所占的比重分别是18.5%、30.7%和50.8%。一般认为比较合理的比例是3:4:3。封装测试在我国先行一步,发展最快,规模也最大,是全球半导体产业向中国转移比较充分的环节。而处于上游的IC设计成为最薄弱的环节。芯片制造业介于前两者之间,目前跨国公司已经开始把芯片制造逐步向我国转移,中芯国际等国内企业发展也比较快。
这样的产业结构特点说明,国内的半导体企业多数并未直接面对半导体产品的用户—电子设备制造商和工业、军事设备制造商,甚至多数也没有直接分享国内市场。更多的是充当国际半导体产业链的一个中间环节,间接服务于国际国内电子设备市场。这种结构,利润水平偏低,定价能力不强,客户结构对于企业业绩影响较大。究其原因,还是国内技术水平低,高端核心芯片、关键设备、材料、IP等基本依赖进口,相关标准和专利受制于人。国内企业发展也不够成熟,规模偏小,设计、制造、应用三个环节脱节。
与产业链地位相对应,我国大陆的企业多为Foundry(代工)企业,这与台湾的产业特点相类似。国际上大的半导体跨国公司多为IDM形式。
2007全球半导体市场波动,未来增长前景良好
半导体产业长期具有行业波动性
硅周期性依然将长期存在。这是由半导体产业所处的位置决定的。半导体产业本身具有较长的产业链环节。
同时,半导体产业本身是电子设备大产业链的一个中间环节。下游需求和价格变动等外在扰动因素、产业技术升级等内在扰动因素必然在整个产业链产生传导作用。传导过程存在延时,从而导致半导体公司的反应滞后。半导体产业只有提高自身的下游需求预见性,及早对价格、需求和库存等变动做出预测,从而尽量减小波动的幅度。但是,半导体产业的波动性将长期存在。
2006年全球手机销售量增加21%
2006年全球手机销售量为9.908亿部,同比增长21%,其中,2006年四季度售出2.84亿部,占全年28.5%。
Gartner预测2007年手机销量为12亿部,比2006年增加2亿部。手机市场增长平稳。手机作为个人移 动终端,除了通信和已经得到初步普及的音乐播放功能外,将集成越来越多的功能,包括GPS、手机电视等等。3G的逐渐部署也极大促进手机市场的增长。手机用芯片包括信号处理、内存和电源管理等。图9反映了手机用内存需求的增加情况。
2006至2011年全球数字电视机市场将增长一倍
iSuppli预测,从2006年至2011年全球数字电视机半导体市场将增长一倍,从71亿美元增至142亿美元。
数字电视机的芯片应用包括输入/输出电路、驱动电路、电源管理等方面。带动数字电视机增长的因素有多种,包括平板电视价格下降,新一代DVD播放机普及,高清电视推广等。此外,许多国家的政府都宣布了从模拟电视切换到数字电视广播系统的计划。例如,2009年2月17日,全美模拟电视将停播,全部切换为数字电视广播。
中国内地半导体产业的“生态”环境
中国大陆半导体产业作为国际产业链的一个环节,企业形态以代工型企业(foundry)为主,产业结构偏重封装测试环节,半导体制造快速发展,未来我国半导体产业与国际产业大环境的联系将愈发密切。
总的来看,国内企业规模和市场份额相对较小,产品单一,企业发展和技术水平还不够成熟稳定,行业处于成长期。下游通信、消费电子、汽车电子等产业同样是正在上升的市场,发展程度低于国际先进水平,发展速度快于国际平均水平。各种因素共同作用,使得我国半导体产业发展并非完全与国际同步,具备自身的产业“生态环境”,具有不同的发展特点。
2007年上半年,虽然全球市场增速只有2%,但我国内地依然保持了较高的增长速度。上半年中国集成电路总产量同比增长15.2%,达到192.74亿块。共实现销售收入总额607.22亿元,同比增长33.2%。收入增长与2006上半年的48%相比有所回落,部分是受国际市场的影响,但相当大的程度还是国内产业收入基数增大等因素及内在发展规律所致。
我国半导体市场和产业规模增长远快于全球整体增速
受益于国际电子制造业向我国内地转移,以及国内计算机、通信、电子消费等需求的拉动,我国内地半导体市场规模的增长远快于全球市场的增长速度,已经成为全球半导体市场增长的重要推动区域。
作为半导体产业的重要组成部分,国内集成电路产业规模也是全球增长最快的。上世纪90年代初,我国IC产业规模仅有10亿元,至2000年突破百亿元,用了近10年时间;而从2000年的百亿元增至2006年的千亿元,只用了6年时间。今年年底,中国集成电路产业收入总额有望超过全球8%,提前实现我国“十一五”规划提出的“到2010年国内集成电路产业规模占全球8%份额”的目标。
我国半导体应用产业处在高速发展阶段
PC、手机等传统领域发展依然平稳,同时多媒体播放GPS和手机电视为手机等移 动终端带来了新的增长点。
我国数字电视、3G、汽车电子、医疗电子等领域发展进程有别于国际水平,未来几年内将进入高速发展阶段,有力促进国内半导体需求。
抢占标准制高点,充分利用国内市场资源
其实,从目前的角度来看,我国市场规模的快速增长,国内企业在某种程度的程度还不是直接受益者。这是由国内半导体产业在国际产业链中所处的位置所决定的。这一情况在逐步改善,其中最重要的一点,就是我国在标准和专利方面取得突破。
国内的管理部门、专家团队、科研机构和企业已经具有了产业发展的规划能力和前瞻性。在国内相关发展规划的指导下,产业管理部门、科研机构和企业的共同努力,促使3G通信标准TD-SCDMA、数字音视频编解码标准AVS标准、数字电视地面传输国家标准DTMB等系列国内标准出台;手机电视标准虽然尚未明确,但CMMB等国内标准已经打下了良好的基础。这些国有标准虽然未必使国内公司独享这些领域的半导体设计和制造市场,但是标准的制定主要是依靠国内科研机构和企业。在标准制定的过程之中,这些科研机构和企业已经系统地实现了相关技术,研发出了验证产品,取得先入优势。标准制定的同时,国内科研机构已经开展专利池的建设。这样,国内半导体产业就具备了分享这些领域的国内市场的有利条件。我们有理由相信,国内数字电视、消费电子等产业进一步发展,已经对国内半导体产业等上游产业具有了昔日不可比拟的带动能力,本土半导体公司可以更加直接的“触摸”到国内半导体应用产业了。
产业链结构缓慢向上游迁移
自有标准体系的建立,使国内半导体产业的发展具备了一定的优势。身处有利的“生态环境”内,我国半导体产业发展前景良好。目前,我国半导体产业结构已经在逐渐发生变化。2002年,中国IC设计、制造和封装测试业所占的比重分别为8.1%、17.6%、和74.3%,2006年,这一数字变为18.5%、30.7%和50.8%。设计、制造、封装测试三业并举,我国半导体产业才能产生更好的协同作用,国际公认的合理比例是3:4:3。我国半导体产业比例的改变,说明我国集成电路产业在向中上游延伸,但距离理想的比例还有差距。设计和制造业需要更快的提高。
芯片设计水平和收入逐步提高
从集成电路产业链的角度来看,只有掌握了设计,使产业链结构趋于合理,才能掌握我国IC产业的主动权,才能进入IC产业的高附加值领域。近年来,我国集成电路的设计水平不断提高。20%的设计企业能够进行0.18微米、100万门的IC设计,最高设计水平已达90纳米、5000万门。
虽然我国半导体产业很多没有直接分享国内3G、消费电子等领域的高成长。但是,这些领域确实对我国IC设计业的发展提供了良好的发展契机。例如,鼎芯承担了中国3G“TD-SCDMA产业化”国家专项,并在2006年成为中国TD产业联盟第一家射频成员;展讯通信(上海)有限公司是一家致力于手机芯片研发的半导体企业,2006年的销售额达3.32亿元。内地排名第一的芯片设计企业是珠海炬力集成电路设计有限公司(晶门科技总部位于香港),MP3芯片产品做的比较成功,去年的销售额达到了13.46亿美元。中星微电子和展讯通信公司先后获得国家科技最高奖—国家科技进步一等奖。
芯片生产线快速增长
我国新建IC芯片生产线增长很快。从2006年至今增加了10条线,平均每年增加6条。已经达到最高90纳米、主流技术0.18微米的技术水平。12英寸和8英寸芯片生产线产能在国内晶圆总产能中所占的比重则已经超过60%。跨国企业加快了把芯片制造环节向国内转移的速度,Intel也将在大连投资25亿兴建一座芯片生产厂。
建成投产后形成月产12英寸、90纳米集成电路芯片52000片的生产能力,主要产品为CPU芯片组。目前我国大尺寸线比例仍然偏小,生产线的总数占全世界的比例也还小于10%。“十一五”期间我国IC生产线有望保持快速增加。
『肆』 世界著名半导体公司有哪些
世界最大半导体产商:英特尔、三星电子、德州仪器、东芝、STMicroelectronics、Renesas、英飞凌、飞利浦、现代半导体、NEC
『伍』 半导体产业有哪些好的企业
斯达半导、新洁能、卓胜微、华虹半导体、英诺赛科等等。
『陆』 半导体芯片产业有什么密集
技术密集,研发密集,创新密集,专利密集都是半导体芯片产业的特色
『柒』 国内做半导体的公司有哪些
比较著名来的有中国最大的自晶圆代工厂之一上海先进半导体制造有限公司(ASMC)先进半导体公司前身为上海飞利浦半导体公司,成立于1988年10月。1995年更名为上海先进半导体制造有限公司。还有上海松下半导体有限公司(SIMS)成立于1994年11月,是上海仪电控股(集团)公司和日本松下电器产业株式会社共同出资组建的、主要从事大规模和超大规模集成电路封装测试的高新技术型企业,坐落于上海漕河泾地区,现有员工700人。
『捌』 半导体的应用领域有哪些
试想过你的生活缺少了数字是什么概念吗?那将是一个混乱的世界,无论是你的手机号码、你的身份证号码、还是你家的门牌号,这些全部都是用数字表达的!电子游戏、电子邮件、数码音乐、数码照片、多媒体光盘、网络会议、远程教学、网上购物、电子银行和电子货币……几乎一切的东西都可以用0和1来表示。电脑和互联网的出现让人们有了更大的想象和施展的空间,我们的生活就在这简单的“0”“1”之间变得丰富起来、灵活起来、愉悦起来,音像制品、手机、摄像机、数码相机、MP3、袖珍播放机、DVD播放机、PDA、多媒体、多功能游戏机、ISDN等新潮电子产品逐渐被人们所认识和接受,数字化被我们随身携带着,从而拥有了更加多变的视听新感受,音乐和感觉在数字化生活中静静流淌……
数字生活已成为信息化时代的特征,它改变着人类生活的方方面面,在此背后,隐藏着新材料的巨大功勋,新材料是数字生活的“幕后英雄”。
计算机是数字生活中的重要设备,计算机的核心部件是中央处理器(CPU)和存储器(RAM),它们是以大规模集成电路为基础建造起来的,而这些集成电路都是由半导体材料做成的,Si片是第一代半导体材料,集成电路中采用的Si片必须要有大的直径、高的晶体完整性、高的几何精度和高的洁净度。为了使集成电路具有高效率、低能耗、高速度的性能,相继发展了GaAs、InP等第二代半导体单晶材料。SiC、GaN、ZnSe、金刚石等第三代宽禁带半导体材料、SiGe/Si、SOI(Silicon On Insulator)等新型硅基材料、超晶格量子阱材料可制作高温(300~500°C)、高频、高功率、抗辐射以及蓝绿光、紫外光的发光器件和探测器件,从而大幅度地提高原有硅集成电路的性能,是未来半导体材料的重要发展方向。
人机交换,常常需要将各种形式的信息,如文字、数据、图形、图像和活动图像显示出来。静止信息的显示手段最常用的如打印机、复印机、传真机和扫描仪等,一般称为信息的输出和输入设备。为提高分辨率以及输入和输出的速度,需要发展高灵敏度和稳定的感光材料,例如激光打印机和复印机上的感光鼓材料,目前使用的是无机的硒合金和有机的酞菁染料。显示活动图像信息的主要部件是阴极射线管(CRT),广泛地应用在计算机终端显示器和平面电视上,CRT目前采用的电致发光材料,大都使用稀土掺杂(Tb3+、Sn3+、Eu3+等)和过渡元素掺杂(Mn2+)的硫化物(ZnS、CdS等)和氧化物(Y2O3、YAlO3)等无机材料。
为了减小CRT庞大的体积,信息显示的趋势是高分辨率、大显示容量、平板化、薄型化和大型化,为此主要采用了液晶显示技术(LCD)、场致发射显示技术(FED)、等离子体显示技术(PDP)和发光二极管显示技术(LED)等平板显示技术,广泛应用在高清晰度电视(HDTV)、电视电话、计算机(台式或可移动式)显示器、汽车用及个人数字化终端显示等应用目标上,CRT不再是一支独秀,而是形成与各种平板显示器百花争艳的局面。
在液晶显示技术中采用的液晶材料早已在手表、计算器、笔记本电脑、摄像机中得到应用,液晶材料较早使用的是苯基环己烷类、环己基环己烷类、吡啶类等向列相和手征相材料,后来发展了铁电型(FE)液晶,响应时间在微秒级,但铁电液晶的稳定性差,只能用分支法(side-chain)来改进。目前趋向开发反铁电液晶,因为它们的稳定性较高。
液晶显示材料在大屏幕显示中有一定的困难,目前作为大屏幕显示的主要候选对象为等离子体显示器(PDP)和发光二极管(LED)。PDP所用的荧光粉为掺稀土的钡铝氧化物。用类金刚石材料作冷阴极和稀土离子掺杂的氧化物作发光材料,推动场发射显示(FED)的发展。制作高亮度发光二极管的半导体材料主要为发红、橙、黄色的GaAs基和GaP基外延材料、发蓝光的GaN基和ZnSe基外延材料等。
由于因特网和多媒体技术的迅速发展,人类要处理、传输和存储超高信息容量达太(兆兆)数字位(Tb,1012bits),超高速信息流每秒达太位(Tb/s),可以说人类已经进入了太位信息时代。现代的信息存储方式多种多样,以计算机系统存储为例,存储方式分为随机内存储、在线外存储、离线外存储和脱机存储。随机内存储器要求集成度高、数据存取速度快,因此一直以大规模集成的微电子技术为基础的半导体动态随机存储器(DRAM)为主,256兆位的随机动态存储器的晶体管超过2亿个。外存储大都采用磁记录方式,磁存储介质的主要形式为磁带、磁泡、软磁盘和硬磁盘。磁存储密度的提高主要依赖于磁介质材料的改进,相继采用了磁性氧化物(如g-Fe2O3、CrO2、金属磁粉等)、铁氧体系、超细磁性氧化物粉末、化学电镀钴镍合金或真空溅射蒸镀Co基合金连续磁性薄膜介质等材料,磁存储的信息存储量从而有了很大的提高。固体(闪)存储器(flash memory)是不挥发可擦写的存储器,是基于半导体二极管的集成电路,比较紧凑和坚固,可以在内存与外存间插入使用。记录磁头铁芯材料一般用饱和磁感大的软磁材料,如80Ni-20Fe、Co-Zr-Nb、Fe-Ta-C、45Ni-55Fe、Fe-Ni-N、Fe-Si、Fe-Si-Ni、67Co-10Ni-23Fe等。近年来发展起来的巨磁阻(GMR)材料,在一定的磁场下电阻急剧减小,一般减小幅度比通常磁性金属与合金的磁电阻数值约高10余倍。GMR一般由自由层/导电层/钉扎层/反强磁性层构成,其中自由层可为Ni-Fe、Ni-Fe/Co、Co-Fe等强磁体材料,在其两端安置有Co-Cr-Pt等永磁体薄膜,导电层为数nm的铜薄膜,钉扎层为数nm的软磁Co合金,磁化固定层用5~40nm的Ni-O、Ni-Mn、Mn-In、Fe-Cr-Pt、Cr-Mn-Pt、Fe-Mn等反强磁体,并加Ru/Co层的积层自由结构。采用GMR效应的读出磁头,将磁盘记录密度一下子提高了近二十倍,因此巨磁阻效应的研究对发展磁存储有着非常重要的意义。
声视领域内激光唱片和激光唱机的兴起,得益于光存储技术的巨大发展,光盘存贮是通过调制激光束以光点的形式把信息编码记录在光学圆盘镀膜介质中。与磁存储技术相比,光盘存储技术具有存储容量大、存储寿命长;非接触式读/写和擦,光头不会磨损或划伤盘面,因此光盘系统可靠,可以自由更换;经多次读写载噪比(CNR)不降低。光盘存储技术经过CD(Compact Disk)、DVD(Digital Versatile Disk)发展到将来的高密度DVD(HD-DVD)、超高密度DVD(SHD-DVD)过程中,存储介质材料是关键,一次写入的光盘材料以烧蚀型(Tc合金薄膜,Se-Tc非晶薄膜等)和相变型(Te-Ge-Sb非晶薄膜、AgInTeSb系薄膜、掺杂的ZnO薄膜、推拉型偶氮染料、亚酞菁染料)为主,可擦重写光盘材料以磁光型(GdCo、TeFe非晶薄膜、BiMnSiAl薄膜、稀土掺杂的石榴石系YIG、Co-Pt多层薄膜)为主。光盘存储的密度取决于激光管的波长,DVD盘使用的InGaAlP红色激光管(波长650nm)时,直径12cm的盘每面存储为4.7千兆字节(GB),而使用ZnSe(波长515nm)可达12GB,将来采用GaN激光管(波长410nm),存储密度可达18GB。要读写光盘里的信息,必须采用高功率半导体激光器,所用的激光二极管采用化合物半导体GaAs、GaN等材料。
激光器除了在光盘存储应用之外,在光通信中的作用也是众所周知的。由于有了低阈值、低功耗、长寿命及快响应的半导体激光器,使光纤通信成为现实。光通讯就是由电信号通过半导体激光器变为光信号,而后通过光导纤维作长距离传输,最后再由光信号变为电信号为人接收。光纤所传输的光信号是由激光器发出的,常用的为半导体激光器,所用材料为GaAs、GaAlAs、GaInAsP、InGaAlP、GaSb等。在接受端所用的光探测器也为半导体材料。缺少光导纤维,光通信也只能是“纸上谈兵”。低损耗的光学纤维是光纤通信的关键材料,目前所用的光学纤维传感材料主要有低损耗石英玻璃、氟化物玻璃和Ga2S3为基础的硫化物玻璃和塑料光纤等,1公斤石英为主的光纤可代替成吨的铜铝电缆。光纤通信的出现是信息传输的一场革命,信息容量大、重量轻、占用空间小、抗电磁干扰、串话少、保密性强,是光纤通信的优点。光纤通信的高速发展为现代信息高速公路的建设和开通起到了至关重要的作用。
除了有线传播外,信息的传播还采用无线的方式。在无线传播中最引人注目的发展是移动电话。移动电话的用户愈多,所使用的频率愈高,现在正向千兆周的频率过渡,电话机的微波发射与接收亦是靠半导体晶体管来实现,其中部分Si晶体管正在被GaAs晶体管所取代。在手机中广泛采用的高频声表面波SAW(Surface Acoustic Wave)及体声波BAW(Bulk Surface Acoustic Wave)器件中的压电材料为a-SiO2、LiNbO3、LiTaO3、Li2B4O7、KNbO3、La3Ga5SiO14等压电晶体及ZnO/Al2O3和SiO2/ZnO/DLC/Si等高声速薄膜材料,采用的微波介质陶瓷材料则集中在BaO-TiO2体系、BaO-Ln2O3-TiO2(Ln=La,Pr,Nd,Sm,Eu,Gd)体系、复合钙钛矿A(B1/3B¢2/3)O3体系(A=Ba,Sr;B=Mg,Zn,Co,Ni,Mn;B¢=Nb,Ta)和铅基复合钙钛矿体系等材料上。
随着智能化仪器仪表对高精度热敏器件需求的日益扩大,以及手持电话、掌上电脑PDA、笔记本电脑和其它便携式信息及通信设备的迅速普及,进一步带动了温度传感器和热敏电阻的大量需求,负温度系数(NTC)热敏电阻是由Co、Mn、Ni、Cu、Fe、Al等金属氧化物混合烧结而成,其阻值随温度的升高呈指数型下降,阻值-温度系数一般在百分之几,这一卓越的灵敏度使其能够探测极小的温度变化。正温度系数(PTC)热敏电阻一般都是由BaTiO3材料添加少量的稀土元素经高温烧结的敏感陶瓷制成的,这种材料在温度上升到居里温度点时,其阻值会以指数形式陡然增加,通常阻值-温度变化率在20~40%之间。前者大量使用在镍镉、镍氢及锂电池的快速充电、液晶显示器(LCD)图像对比度调节、蜂窝式电话和移动通信系统中大量采用使用的温度补偿型晶体振荡器等中,来进行温度补偿,以保证器件性能稳定;此外还在计算机中的微电机、照相机镜头聚焦电机、打印机的打印头、软盘的伺服控制器和袖珍播放机的驱动器等中,发现它的身影。后者可以用于过流保护、发热器、彩电和监视器的消磁、袖珍压缩机电机的启动延迟、防止笔记本电脑常效应管(FET)的热击穿等。
为了保证信息运行的通畅,还有许多材料在默默地作着贡献,例如,用于制作绿色电池的材料有:镍氢电池的正、负极材料用MH合金和Ni(OH)2材料、锂离子电池的正、负极用LiCoO2、LiMn2O4和MCMB碳材料等电极材料;移动电话、PC机以及诸如数码相机、MD播放机/录音机、DVD设备和游戏机等数字音/视频设备等中钽电容器所用材料;现代永磁材料Fe14Nd2B在制造永磁电极、磁性轴承、耳机及微波装置等方面有十分重要的用途;印刷电路板(PCB)及超薄高、低介电损耗的新型覆铜板(CCL)用材料;环氧模塑料、氧化铝和氮化铝陶瓷是半导体和集成电路芯片的封装材料;集成电路用关键结构与工艺辅助材料(高纯试剂、特种气体、塑封料、引线框架材料等),不一而足,这些在浩瀚的材料世界里星光灿烂的新材料,正在数字生活里发挥着不可或缺的作用。
随着科技的发展,大规模集成电路将迎来深亚微米(0.1mm)硅微电子技术时代,小于0.1mm的线条就属于纳米范畴,它的线宽就已与电子的德布罗意数相近,电子在器件内部的输运散射也将呈现量子化特性,因而器件的设计将面临一系列来自器件工作原理和工艺技术的棘手问题,导致常说的硅微电子技术的“极限”。由于光子的速度比电子速度快得多,光的频率比无线电的频率高得多,为提高传输速度和载波密度,信息的载体由电子到光子是必然趋势。目前已经发展了许多种激光晶体和光电子材料,如Nd:YAG、Nd:YLF、Ho:YAG、Er:YAG、Ho:Cr:Tm:YAG、Er:YAG、Ho:Cr:Tm:YLF、Ti:Al2O3、YVO4、Nd:YVO4、Ti:Al2O3、KDP、KTP、BBO、BGO、LBO、LiNbO3、K(Ta,Nb)O3、Fe:KnBO3、BaTiO3、LAP等,所有这些材料将为以光通信、光存储、光电显示为主的光电子技术产业作出贡献。随着信息材料由电子材料、微电子材料、光电子材料向光子材料发展,将会出现单电子存储器、纳米芯片、量子计算机、全光数字计算机、超导电脑、化学电脑、生物电脑和神经电脑等纳米电脑,将会极大地影响着人类的数字生活。
本世纪以来,以数字化通信(Digital Communication)、数字化交换(Digital Switching)、数字化处理(Digital Processing)技术为主的数字化生活(Digital Life)正在向我们招手,一步步地向我们走来——清晨,MP3音箱播放出悦耳的晨曲,催我们按时起床;上班途中,打开随身携带的笔记本电脑,进行新一天的工作安排;上班以后,通过互联网召开网络会议、开展远程教学和实时办公;在下班之前,我们远程启动家里的空调和湿度调节器,保证家中室温适宜;下班途中,打开手机,悠然自在观看精彩的影视节目;进家门前,我们接收网上订购的货物;回到家中,和有线电视台进行互动,观看和下载喜欢的影视节目和歌曲,制作多媒体,也可进入社区互联网,上网浏览新闻了解天气……这一切看上去是不是很奇妙?似乎遥不可及。其实它正在和将要发生在我们身边,随着新一代家用电脑和互联网的出现,如此美好数字生活将成为现实。当享受数字生活的同时,饮水思源,请不要忘记为此作出巨大贡献的功臣——绚丽多彩的新材料世界!
『玖』 半导体都有哪些应用
半导体指常温下导电性能介于导体与绝缘体之间的材料。半导体在消费电子、通信系统、医疗仪器等领域有广泛应用。如二极管就是采用半导体制作的器件。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。今日大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关连。常见的半导体材料有硅、锗、砷化镓等,而硅更是各种半导体材料中,在商业应用上最具有影响力的一种。
半导体应用
光伏应用
半导体材料光生伏特效应是太阳能电池运行的基本原理。现阶段半导体材料的光伏应用已经成为一大热门 ,是目前世界上增长最快、发展最好的清洁能源市场。太阳能电池的主要制作材料是半导体材料,判断太阳能电池的优劣主要的标准是光电转化率,光电转化率越高 ,说明太阳能电池的工作效率越高。根据应用的半导体材料的不同 ,太阳能电池分为晶体硅太阳能电池、薄膜电池以及III-V族化合物电池。
照明应用
LED是建立在半导体晶体管上的半导体发光二极管,采用LED技术半导体光源体积小,可以实现平面封装,工作时发热量低、节能高效,产品寿命长、反应速度快,而且绿色环保无污染,还能开发成轻薄短小的产品 ,一经问世 ,就迅速普及,成为新一代的优质照明光源,目前已经广泛的运用在我们的生活中。如交通指示灯、电子产品的背光源、城市夜景美化光源、室内照明等各个领域 ,都有应用。
大功率电源转换
交流电和直流电的相互转换对于电器的使用十分重要 ,是对电器的必要保护。这就要用到等电源转换装置。碳化硅击穿电压强度高 ,禁带宽度宽,热导性高,因此SiC半导体器件十分适合应用在功率密度和开关频率高的场合,电源装换装置就是其中之一。碳化硅元件在高温、高压、高频的又一表现使得现在被广泛使用到深井钻探,发电装置中国的逆变器,电气混动汽车的能量转化器,轻轨列车牵引动力转换等领域。由于SiC本身的优势以及现阶段行业对于轻量化、高转换效率的半导体材料需要,SiC将会取代Si,成为应用最广泛的半导体材料。
『拾』 半导体产业包括哪些方面
半导体产业系列
http://www.is-law.com/seminar/%B0%AA%AC%EC%A7%DE%B3%D0%B7s%B1M%C3D%C1%BF%AEy.pdf
半导体产业之介绍
http://www.law.cycu.e.tw/yinchin/teacher/2002%A6~%BA%F4%AD%B6%B8%EA%AE%C6%A7%A8/%AC%EC%A7%DE%B2%A3%B7~%AAk%C1%BF%B8q/%A4%A4%AD%EC%A4j%BE%C71014%B1i%B5n%ABT%A5b%BE%C9%C5%E9%B2%A3%B7~%A4%B6%B2%D0.ppt
半导体产业专论
http://wis.mic.com.tw/document/mic_digi/REPORT/report_topology/Topic/2000/2000Springsemiconctor.doc