半导体材料为什么需要氧化
㈠ 为什么芯片都用半导体材料做成
在二氧化硅上蚀刻出电路后
会用经过电场加速的离子进行掺杂
掺杂后的区域导电性会有变化
之后镀铜以便形成电路
之所以用硅的原因
就是杂离子掺杂后其导电性质的改变
使掺杂的部分可以变为元件
㈡ 什么叫半导体材料
(1)什么叫半导体?
导电性能介于导体与绝缘体之间的材料,叫做半导体.
例如:锗、硅、砷化镓回等.
半导体在科学答技术,工农业生产和生活中有着广泛的应用.(例如:
电视、半导体收音机、电子计算机等)这是什么原因呢?下面介绍它
所具有的特殊的电学性能.
(2)半导体的一些电学特性
①压敏性:有的半导体在受到压力后电阻发生较大的变化.
用途:制成压敏元件,接入电路,测出电流变化,以确定压力的变化.
②热敏性:有的半导体在受热后电阻随温度升高而迅速减小.
用途:制成热敏电阻,用来测量很小范围内的温度变化.
㈢ 为什么半导体材料制成的器件都有一定的极限工作温度
热敏电阻是指电阻值随温度变化而变化的敏感元件。在工作温度范围内,电阻值随温度上升而增加的是正温度系数(PTC)热敏电阻器;电阻值随温度上升而减小的是负温度系数(NTC)热敏电 热敏电阻器 阻器。图中为四种常见的热敏电阻器的电阻-温度特性曲线。曲线 1是金属热敏电阻器。它的电阻值随温度上升而线性增加,电阻温度系数为+0.004K-1左右。曲线2是普通负温度系数热敏电阻器。它的电阻值随温度上升而呈指数减小,室温下的电阻温度系数为-0.02K-1~-0.06K-1。曲线3是临界热敏电阻器(CTR)。它的电阻值在某一特定温度附近随温度上升而急剧减小,变化量达到2~4个数量级。曲线4A和4B是钛酸钡系正温度系数热敏电阻器。前者为缓变型,室温下的电阻温度系数在+0.03~+0.08K-1之间;后者为开关型,在某一较小温度区间,电阻值急增几个数量级,电阻温度系数可达+0.10~+0.60K-1。 1871年西门子公司首先用纯铂制成测温用铂热敏电阻器,之后又出现纯铜和纯镍热敏电阻器。这类纯金属热敏电阻器有极好的重复性和稳定性。早在1834年以前,M.法拉第就发现硫化银等半导体材料具有很大的负电阻温度系数。但直到20世纪30年代,才使用硫化银、二氧化铀等材料制成有实用价值的热敏电阻器。1940年美国J.A.贝克等人发现某些过渡金属氧化物经混合烧结后,成为具有很大负温度系数的半导体,而且性能相当稳定。1946年后生产的普通负温度系数热敏电阻器,绝大多数是用这种合成氧化物半导体制成的。1954年P.W.哈依曼等人发现添加微量稀土元素的钛酸钡陶瓷具有较理想的正电阻温度系数,以后在此基础上制成了热敏电阻器,并发展成系列品种,应用范围日益扩大。
㈣ 为什么芯片要用硅作为半导体材料,而不用其他的
理论上所有半导体都可以作为芯片材料,但是硅的性质稳定、容易提纯、储存量巨大等等性质,是所有半导体材料中,最适合做芯片的。
在晶体管(二极管、三极管等等)未发明之前,初期电子计算机使用的是电子管,但是电子管体积巨大、功耗高、寿命短;人类第一台电子计算机使用18000个电子管,重30吨,占地150平方米,耗电功率高达150千瓦,但是其运算能力远远赶不上如今的一台掌上计算机。
其中硅因为拥有众多优良特性,使得硅成为芯片的主要材料:
(1)硅元素的含量巨大,地球元素中仅次于氧元素(地球元素含量排行:氧>硅>铝>铁>钙>钠>钾……)。
(2)硅元素提纯技术成熟,制作成本低,最初晶体管使用锗作为芯片材料,是因为当初硅元素的提纯技术不成熟,如今硅的提纯可以达到99.999999999%。
(3)硅元素的性质稳定,包括化学性质和物质性质,比如锗做成晶体管,当温度达到75℃以上时,其导电率有较大变化,而且做成PN结后锗的反向漏电流比硅大,这对芯片的稳定性非常不利。
(4)硅本身是无毒无害的物质,我们常见的很多石头都含有二氧化硅(SiO2)。
㈤ 半导体材料的生长为什么要用衬底
一些复杂结构的半导体,正常情况下不好长成单晶,那是由于其没有很好专的附着点,也不能成核属,不能凭白提供成核动力啊.更不用说长晶了.
例如,冰雹的形成,有条件了,没有灰尘小颗粒不能凝结成核的,也不能形成冰雹. 雪花也类似.
所以长晶需要衬底,需要相应的晶格匹配,需要成核点.
需要衬底是必须的,但是关键是选择什么的衬底,那才是工艺重要环节之一.