半导体激光器与LED有哪些异同
① 发光二极管和半导体激光器的优缺点是什么
发光二极管
它的优点:亮度高、工作电压低、功耗小、微型化、易与集成电专路匹配、驱属动简单、寿命长、耐冲击、性能稳定。
在电工仪器及控制设备中广泛用作信号、状态指示、数码显示以及各种图形显示等。
它的主要缺点是LED的价位很高,尤其是高亮度级的或特殊颜色的。
半导体激光器
前苏联科学家H.Γ.巴索夫于1960年发明了半导体激光器。半导体激光器的结构通常由P层、N层和形成双异质结的有源层构成。其特点是:尺寸小,耦合效率高,响应速度快,波长和尺寸与光纤尺寸适配,可直接调制,相干性好。
② 单模光纤为什么不能使用发光二极管,而只能使用半导体激光器。
个人认为是激光的长距离方向性好, 所以适用.
根据光纤传输点模数的不同,光纤主要分为两种类型,即单模光纤(Single Mode Fiber,SMF)和多模光纤(Multi Mode Fiber,MMF)。所谓“模”,是指以一定角速度进入光纤的一束光。
多模光纤采用发光二极管LED为光源,1000Mb/s光纤的传输距离为220m--550m。多模光缆和多模光纤端口的价格都相对便宜,但传输距离较近,因此被更多地用于垂直主干子系统,有时也被用于水平子系统或建筑群子系统。
单模光纤采用激光二极管LD作为光源,1000Mb/s光纤的传输距离为550m--100km。单模光缆和单模光纤端口的价格都比较昂贵,但是能提供更远的传输距离和更高的网络带宽,通常被用于远程网络或建筑物间的连接。即建筑群子系统。
单模光纤和多模光纤可以从纤芯的尺寸大小来简单地判别。单模光纤的纤芯很小,约4~10um,只传输主模态。这样可完全避免了模态色散,使得传输频带很宽,传输容量很大。这种光纤适用于大容量、长距离的光纤通信。它是未来光纤通信与光波技术发展的必然趋势。
多模光纤又分为多模突变型光纤和多模渐变型光纤。前者纤芯直径较大,传输模态较多,因而带宽较窄,传输容量较小;后者纤芯中折射率随着半径的增加而减少,可获得比较小的模态色散,因而频带较宽,传输容量较大,目前一般都应用后者。
③ 5.请分别描述半导体发光二极管LED和半导体激光器LD的结构、工作原理,并说明它们的特性差别
它们的结构简单说就是三明治的夹心结构,中间的夹心是有源区。
二者的结构上是相似的,但是LED没有谐振腔,LD有谐振腔。
LD工作原理是基于受激辐射、LED是基于自发辐射。
LD发射功率较高、光谱较窄、直接调制带宽较宽,而LED发射功率较小、光谱较宽、直接调制带宽较窄。
④ 半导体发光二极管LED和半导体激光器LD的结构、工作原理是什么它们的特性差别是什么
它们的结构简单说就是三明治的夹心结构,中间的夹心是有源区。
二者的结专构上是相似的,但是LED没有谐振属腔,LD有谐振腔。
LD工作原理是基于受激辐射、LED是基于自发辐射。
LD发射功率较高、光谱较窄、直接调制带宽较宽,而LED发射功率较小、光谱较宽、直接调制
带宽较窄。
激光器的工作存在与普通光源不同之处在于,它同时需要 激光工作物质(这在半导体激光二极管LD中,激光工作物质即为半导体材料), 泵浦(即外加的能量源),谐振腔。
LD和LED 的工作时,其体系结构中都存在半导体工作物质和泵浦源,唯一不同的是,LD在其外层通过自然解理形成一重谐振腔,该谐振腔有一定的发光门限条件(即阈值条件) 当达到这个条件是,激光器才开始粒子数反转受激发光。 当LD的驱动还没达到阈值条件时,它的发光机理其实和LED是没有明显区别的。
⑤ 半导体激光器(LD)和发光二极管(LED)的的相同点和不同点
第一、不同点:
半导体发光二极管与半导体激光器最大的不同是半导体发光二极管没有谐回振腔,是无阈值器件答,它的发光只限于自发辐射过程,发出的是荧光,半导体发光二极管最大的特点是:光谱较宽、线性好、温度特性好、耦合效率低。
第二、相同点:都是电流驱动发光,不同的是LD内有谐振腔,发出的光是激光,单色性更好。
⑥ 详细说说LD(半导体激光器)和LED(发光二极管)在产品运用上的区别和优略势
1)两者都是光源,区别在于发光的功率不同。
2) 辐照角度,或者说色散角度不版同,决定了使用权时是否需要加透镜准直;也意味着光源照射物体的远近区别。
3) 安全性:LED不需要注意太多,除非是紫外的;LD需要注意使用安全,强光会伤害眼睛
4)成本价格:相差很大
5)长期使用可靠性:都是半导体器件,比较可靠;如果LED的光学组件老化不是很快,那么差别不大
6)电源:大电流恒流驱动与小电流恒压驱动
7)光谱:都是线光谱,LED的线宽宽些
8)响应速率:如果都是GaAs的材料,响应速率差别不大,波形上升沿调制相差不大(我个人观点,未实际测量过)
9)发光功率衰退,这两种器件都有,所以,一般考虑的是老化后使用时的功率
10)应用方面,个人感觉是民用和仪器使用方面的差别,要求重复性好,可靠性高,就用LD。
其它的,我也暂时想不到了,呵呵。
⑦ 光纤通信的优点与缺点
优点和不足
(1)通信容量大、传输距离远;一根光纤的潜在带宽可达20THz。采用这样的带宽,只需一秒钟左右,即可将人类古今中外全部文字资料传送完毕。400Gbit/s系统已经投入商业使用。
光纤的损耗极低,在光波长为1.55μm附近,石英光纤损耗可低于0.2dB/km,这比任何传输媒质的损耗都低。因此,无中继传输距离可达几十、甚至上百公里。
(2)信号干扰小、保密性能好;
(3)抗电磁干扰、传输质量佳,电通信不能解决各种电磁干扰问题,唯有光纤通信不受各种电磁干扰。
(4)光纤尺寸小、重量轻,便于铺设和运输;
(5)材料来源丰富,环境保护好,有利于节约有色金属铜。
(6)无辐射,难于窃听,因为光纤传输的光波不能跑出光纤以外。
(7)光缆适应性强,寿命长。
(8)质地脆,机械强度差。
(9)光纤的切断和接续需要一定的工具、设备和技术。
(10)分路、耦合不灵活。
(11)光纤光缆的弯曲半径不能过小(>20cm)
(12)有供电困难问题。
(7)半导体激光器与LED有哪些异同扩展阅读:
光纤通信的发展:
光纤通信是现代通信网的主要传输手段,它的发展历史只有一二十年,已经历三代:短波长多模光纤、长波长多模光纤和长波长单模光纤.采用光纤通信是通信史上的重大变革,美、日、英、法等20多个国家已宣布不再建设电缆通信线路,而致力于发展光纤通信.中国光纤通信已进入实用阶段.
光纤通信的诞生和发展是电信史上的一次重要革命与卫星通信、移动通信并列为20世纪90年代的技术。进入21世纪后,由于因特网业务的迅速发展和音频、视频、数据、多媒体应用的增长,对大容量(超高速和超长距离)光波传输系统和网络有了更为迫切的需求。
趋势:
FTTH可向用户提供极丰富的带宽,所以一直被认为是理想的接入方式,对于实现信息社会有重要作用,还需要大规模推广和建设。FTTH所需要的光纤可能是现有已敷光纤的2~3倍。过去由于FTTH成本高,缺少宽带视频业务和宽带内容等原因,使FTTH还未能提到日程上来,只有少量的试验。