半导体二极管的基本应用有哪些
㈠ 求半导体二极管在现实生活中的应用题目及其解答
说一个最常见的: 家家都在使用的节能灯,每个灯头里面都有四只二极管。其它如手机充电器,LED手电等与生活息息相关的东西都含有多只二极管。LED发光管本身就是二极管。
㈡ 半导体二极管有哪些
半导体二极管又称晶体二极管,简称二极管(diode);它只往一个方向传送电流的电子零件。它是一种具有1个零件号接合的2个端子的器件,具有按照外加电压的方向,使电流流动或不流动的性质。 几乎在所有的电子电路中,都要用到半导体二极管,它在许多的电路中起着重要的作用,它是诞生最早的半导体器件之一,其应用也非常广泛。 二极管的管压降:硅二极管(不发光类型)正向管压降0.7V,发光二极管正向管压降为随不同发光颜色而不同。二极管的应用: 1、整流二极管 利用二极管单向导电性,可以把方向交替变化的交流电变换成单一方向的脉动直流电。 2、开关元件 二极管在正向电压作用下电阻很小,处于导通状态,相当于一只接通的开关;在反向电压作用下,电阻很大,处于截止状态,如同一只断开的开关。利用二极管的开关特性,可以组成各种逻辑电路。 3、限幅元件 二极管正向导通后,它的正向压降基本保持不变(硅管为0.7V,锗管为0.3V)。利用这一特性,在电路中作为限幅元件,可以把信号幅度限制在一定范围内。 4、继流二极管 在开关电源的电感中和继电器等感性负载中起继流作用。 5、检波二极管 在收音机中起检波作用。 6、变容二极管 使用于电视机的高频头中。 7、显示元件 用于电视机显示器上。 二极管种类有很多,按照所用的半导体材料,可分为锗二极管(Ge管)和硅二极管(Si管)。根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管、隔离二极管、肖特基二极管、发光二极管、硅功率开关二极管、旋转二极管等。按照管芯结构,又可分为点接触型二极管、面接触型二极管及平面型二极管。点接触型二极管是用一根很细的金属丝压在光洁的半导体晶片表面,通以脉冲电流,使触丝一端与晶片牢固地烧结在一起,形成一个“PN结”。由于是点接触,只允许通过较小的电流(不超过几十毫安),适用于高频小电流电路,如收音机的检波等。面接触型二极管的“PN结”面积较大,允许通过较大的电流(几安到几十安),主要用于把交流电变换成直流电的“整流”电路中。平面型二极管是一种特制的硅二极管,它不仅能通过较大的电流,而且性能稳定可靠,多用于开关、脉冲及高频电路中。 二极管的识别:小功率二极管的N极(负极),在二极管外表大多采用一种色圈标出来,有些二极管也用二极管专用符号来表示P极(正极)或N极(负极),也有采用符号标志为“P”、“N”来确定二极管极性的。发光二极管的正负极可从引脚长短来识别,长脚为正,短脚为负。用数字式万用表去测二极管时,红表笔接二极管的正极,黑表笔接二极管的负极,此时测得的阻值才是二极管的正向导通阻值,这与指针式万用表的表笔接法刚好相反。 半导体是一种具有特殊性质的物质,它不像导体一样能够完全导电,又不像绝缘体那样不能导电,它介于两者之间,所以称为半导体。半导体最重要的两种元素是硅(读“gui”)和锗(读“zhe”)。我们常听说的美国硅谷,就是因为起先那里有好多家半导体厂商。 . 二极管应该算是半导体器件家族中的元老了。很久以前,人们热衷于装配一种矿石收音机来收听无线电广播,这种矿石后来就被做成了晶体二极管。 至于二极管和半导体的关系,二极管的正负二个端子。正端A称为阳极,负端K 称为阴极。电流只能从阳极向阴极方向移动。一些初学者容易产生这样一种错误认识:“半导体的一‘半’是一半的‘半’;面二极管也是只有一‘半’电流流动(这是错误的),所有二极管就是半导体 ”。其实二极管与半导体是完全不同的东西。我们只能说二极管是由半导体组成的器件。半导体无论那个方向都能流动电流。
㈢ 半导体二极管在生活中都有哪些应用(多举例)
1整流所有充电器都用到(手机电动车笔记本电脑)。2检波。
㈣ 半导体二极管有哪几个工作区其特点是什么
半导体二极管有三个工作区分别是源极 闸极 渠极
源极是信号电源入口
闸极是开关
渠极是信号或电源出口
㈤ 半导体二极管的重要特性之一是什么
半导体二抄极管的重要特性之一是什么?——答案:单向导电性。
半导体二极管最重要的特性是单向导电性。即当外加正向电压时,它呈现的电阻(正向电阻)比较小,通过的电流比较大;当外加反向电压时,它呈现的电阻(反向电阻)很大,通过的电流很小。
半导体二极管是指利用半导体特性的两端电子器件。最常见的半导体二极管是PN结型二极管和金属半导体接触二极管。它们的共同特点是伏安特性的不对称性,即电流沿其一个方向呈现良好的导电性,而在相反方向呈现高阻特性。可用作为整流、检波、稳压、恒流、变容、开关、发光及光电转换等。利用高掺杂PN结中载流子的隧道效应可制成超高频放大或超高速开关的隧道二极管。
㈥ 半导体二极管的应用主要有
二极管的特性与应用
几乎在所有的电子电路中,都要用到半导体二极管,它在许多的电路中起着重要的作用,它是诞生最早的半导体器件之一,其应用也非常广泛。
二极管的工作原理
晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电场。当不存在外加电压时,由于p-n 结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。
当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。
当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流I0。
当外加的反向电压高到一定程度时,p-n结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。
二极管的类型
二极管种类有很多,按照所用的半导体材料,可分为锗二极管(Ge管)和硅二极管(Si管)。根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管等。按照管芯结构,又可分为点接触型二极管、面接触型二极管及平面型二极管。点接触型二极管是用一根很细的金属丝压在光洁的半导体晶片表面,通以脉冲电流,使触丝一端与晶片牢固地烧结在一起,形成一个“PN结”。由于是点接触,只允许通过较小的电流(不超过几十毫安),适用于高频小电流电路,如收音机的检波等。
面接触型二极管的“PN结”较大,允许通过较大的电流(几安到几十安),主要用于把交流电变换成直流电的“整流”电路中。
平面型二极管是一种特制的硅二极管,它不仅能通过较大的电流,而且性能稳定可靠,多用于开关、脉冲及高频电路中。
二极管的导电特性
二极管最重要的特性就是单方向导电性。在电路中,电流只能从二极管的正极流入,负极流出。下面通过简单的实验说明二极管的正向特性和反向特性。
1、正向特性
在电子电路中,将二极管的正极接在高电位端,负极接在低电位端,二极管就会导通,这种连接方式,称为正向偏置。必须说明,当加在二极管两端的正向电压很小时,二极管仍然不能导通,流过二极管的正向电流十分微弱。只有当正向电压达到某一数值(这一数值称为“门槛电压”,锗管约为0.2V,硅管约为0.6V)以后,二极管才能直正导通。导通后二极管两端的电压基本上保持不变(锗管约为0.3V,硅管约为0.7V),称为二极管的“正向压降”。
2、反向特性
在电子电路中,二极管的正极接在低电位端,负极接在高电位端,此时二极管中几乎没有电流流过,此时二极管处于截止状态,这种连接方式,称为反向偏置。二极管处于反向偏置时,仍然会有微弱的反向电流流过二极管,称为漏电流。当二极管两端的反向电压增大到某一数值,反向电流会急剧增大,二极管将失去单方向导电特性,这种状态称为二极管的击穿。
二极管的主要参数
用来表示二极管的性能好坏和适用范围的技术指标,称为二极管的参数。不同类型的二极管有不同的特性参数。对初学者而言,必须了解以下几个主要参数:
1、额定正向工作电流
是指二极管连续工作时允许通过的最大正向电流值。因为电流通过管子时会使管芯发热,温度上升,温度超过容许限度(硅管为140左右,锗管为90左右)时,就会使管芯过热而损坏。所以,二极管使用中不要超过二极管额定正向工作电流值。例如,常用的IN4001-4007型锗二极管的额定正向工作电流为1A。
2、最高反向工作电压
加在二极管两端的反向电压高到一定值时,会将管子击穿,失去单向导电能力。为了保证使用安全,规定了最高反向工作电压值。例如,IN4001二极管反向耐压为50V,IN4007反向耐压为1000V。
3、反向电流
反向电流是指二极管在规定的温度和最高反向电压作用下,流过二极管的反向电流。反向电流越小,管子的单方向导电性能越好。值得注意的是反向电流与温度有着密切的关系,大约温度每升高10,反向电流增大一倍。例如2AP1型锗二极管,在25时反向电流若为250uA,温度升高到35,反向电流将上升到500uA,依此类推,在75时,它的反向电流已达8mA,不仅失去了单方向导电特性,还会使管子过热而损坏。又如,2CP10型硅二极管,25时反向电流仅为5uA,温度升高到75时,反向电流也不过160uA。故硅二极管比锗二极管在高温下具有较好的稳定性。
测试二极管的好坏
初学者在业余条件下可以使用万用表测试二极管性能的好坏。测试前先把万用表的转换开关拨到欧姆档的RX1K档位(注意不要使用RX1档,以免电流过大烧坏二极管),再将红、黑两根表笔短路,进行欧姆调零。
1、正向特性测试
把万用表的黑表笔(表内正极)搭触二极管的正极,,红表笔(表内负极)搭触二极管的负极。若表针不摆到0值而是停在标度盘的中间,这时的阻值就是二极管的正向电阻,一般正向电阻越小越好。若正向电阻为0值,说明管芯短路损坏,若正向电阻接近无穷大值,说明管芯断路。短路和断路的管子都不能使用。
2、反向特性测试
把万且表的红表笔搭触二极管的正极,黑表笔搭触二极管的负极,若表针指在无穷大值或接近无穷大值,管子就是合格的。
二极管的应用
1、整流二极管
利用二极管单向导电性,可以把方向交替变化的交流电变换成单一方向的脉动直流电。
2、开关元件
二极管在正向电压作用下电阻很小,处于导通状态,相当于一只接通的开关;在反向电压作用下,电阻很大,处于截止状态,如同一只断开的开关。利用二极管的开关特性,可以组成各种逻辑电路。
3、限幅元件
二极管正向导通后,它的正向压降基本保持不变(硅管为0.7V,锗管为0.3V)。利用这一特性,在电路中作为限幅元件,可以把幅度限制在一定范围内。
4、继流二极管
在开关电源的电感中和继电器等感性负载中起继流作用。
5、检波二极管
在收音机中起检波作用。
6、变容二极管
这个估计需要详细的说明才弄的了去硬之城看看吧或许有人会。
㈦ 模拟电子技术基础\\半导体二极管及其基本应用电路
2-5 一共有三个电路,前两个电路,左边都可以经过戴维宁变换,得到电压6V,电阻3k的等效电回路。
因此答,第一个图,二极管VD截止,输出电压Uo1=6V。当然,如果外接负载,使得输出电压降低到5.3V以后,VD也可能会导通。
第二个图,二极管VD导通,输出电压Uo2=8V-0.7V=7.3V。因为8V电压高于左边6V电压,所以,有上述结论。
第三个图,二极管VD1导通(电压正偏),VD2截止(电压反偏),VD4导通(电压正偏),VD3截止(电压反偏),输出电压Uo3=8V-0.7V=7.3V。
㈧ 半导体二极管有哪些特性
阳极:由P区引出的电极为阳极。
阴极:由N区引出的电极为阴极。
点接触型二极管,通过的电流小,结电容小,适用于高频电路和开关电路。
面接触型二极管,结面积大,电流大,结电容大,适用于低频整流电路。
平面型二极管,结面积较大时可以通过较大电流,适用于大功率整流,结面积较小时,可作为数字电路中的开关管。
开启电压Uon :使二极管开始导通的临界电压称为开启电压Uon。
反向电流:当二极管所加反向电压的数值足够大时,产生反向电流为IS。
在环境温度升高时,二极管的正向特性曲线将左移,反向特性曲线下。如图所示。
温度每升高1°C,正向压降减小2~2.5mV;温度每升高10°C,反向电流约增大一倍。
结论:二极管对温度很敏感。
二极管的主要参数
★最大整流电流IF:指二极管长期工作,允许通过的最大直流电流。
★最高反向工作电压UR:指二极管正常使用允许加的最高反向电压。
稳压管:稳压二极管是一种硅材料制成的面接触型晶体二极管。当稳压管外加反向电压的数值大到一定程度时则击穿。
稳压管的主要参数
★稳定电压UZ:UZ是在规定电流下稳压管的反向击穿电压。
★稳定电流IZ: IZ是稳压管工作在稳压状态时的参考电流。只要不超过稳压管的额定功率,电流愈大,稳压效果愈好。
★额定功耗PZM:PZM等于稳压管的稳定电压UZ与最大稳定电流IZM的乘积。稳压管超过此值时,会因结温升高而损坏。
★动态电阻rZ:rZ为稳压管工作在稳压区时,稳压管电压的变化量与电流变化量之比,即 。rZ愈小,电流变化时UZ的变化愈小,稳压性能愈好。
★温度系数 : 表示温度每变化1°C稳压值的变化量,即 = 。
限流电阻:稳压管电路中必须串联一个电阻来限制电流,从而保证稳压管正常工作,故称这个电阻为限流电阻。
其它类型二极管:
★发光二极管
发光二极管具有单向导电性。只有当外加的正向电压使得正向电流足够大时才发光,正向电流愈大,发光愈强。
★光电二极管
光电二极管是远红外线接收管,是一种光能与电能进行转换的器件。
光电二极管的工作原理:它是利用PN结外加反向电压时,在光线照射下,改变反向电流和反向电阻,当没有光照射时,反向电流很小,反向电阻很大;当有光照射时,反向电阻减小,反向电流加大。
暗电流:光电二极管在无光照射时的反向电流称为暗电流。
明电流:有光照射时的电流称为明电流。
㈨ 半导体二极管主要有什么构成的
现今最普遍的二极管大多是使用半导体材料如硅或锗。
二极管电子元件当中,一种具有两个电极的回装置,只允许电流由单一方向流过,许多的使用是应用其整流的功能。而变容二极管(Varicap Diode)则用来当作电子式的可调电容器。大部分二极管所具备的电流方向性我们通常称之为“整流(Rectifying)”功能。二答极管最普遍的功能就是只允许电流由单一方向通过(称为顺向偏压),反向时阻断 (称为逆向偏压)。因此,二极管可以想成电子版的逆止阀。
早期的真空电子二极管;它是一种能够单向传导电流的电子器件。在半导体二极管内部有一个PN结两个引线端子,这种电子器件按照外加电压的方向,具备单向电流的传导性。一般来讲,晶体二极管是一个由p型半导体和n型半导体烧结形成的p-n结界面。在其界面的两侧形成空间电荷层,构成自建电场。当外加电压等于零时,由于p-n 结两边载流子的浓度差引起扩散电流和由自建电场引起的漂移电流相等而处于电平衡状态,这也是常态下的二极管特性。