哪些元素属于半导体
❶ 元素周期表里面哪些是半导体元素在元素周期表里面的
元素周期表里面哪些是半导体元素在元素周期表里面的
金属与非金属分界线两侧的元素既有金属性又有非金属性,但并不都是半导体(例碲是导体).
现在常用的:硅、锗、硒的单质是半导体,其它一般不说.
❷ 什么元素的单质是一种常见的半导体材料
由四种短周期元素在周抄期表中的位置,可知M为第三周期元素,且只有M为金属元素,则M为Al,结合位置可知X为Si,Y为N,Z为O,
A.Si位于金属与非金属元素的交界处,则元素X的单质是一种常见的半导体材料,故A正确;
B.M和Y的最高价氧化物对应的水化物分别为氢氧化铝、硝酸,二者可发生复分解反应生成盐和水,故B正确;
C.非金属性N>Si,Y的最高价氧化物对应水化物的酸性比X 的强,故C错误;
D.非金属性O>N,Z的气态氢化物比Y的气态氢化物稳定,故D正确;
故选C.
❸ 半导体材料有哪些
在可预见的将来,单晶硅仍是电子工业的首选材料,但砷化镓这位半导体家族新秀已迅速成长为仅次于硅的重要半导体电子材料。砷化镓在当代光电子产业中发挥着重要的作用,其产品的50%应用在军事、航天方面,30%用于通信方面,其余的用于计算机和测试仪器。
砷化镓材料的特殊结构使其具备吸引人的优良特性。根据量子力学原理,电子的有效质量越小,它的运动速度就越快,而砷化镓中电子的有效质量是自由电子质量的1/15,只有硅电子的1/3。用砷化镓制成的晶体管的开关速度,比硅晶体管快1~4倍,用这样的晶体管可以制造出速度更快、功能更强的计算机。因为砷化镓的电子运动速度很高,用它可以制备工作频率高达1010赫兹的微波器件,在卫星数据传输、通信、军用电子等方面具有关键性作用。实际上,以砷化镓为代表的Ⅲ—Ⅳ族半导体,其最大特点是其光电特性,即在光照或外加电场的情况下,电子激发释放出光能。它的光发射效率比其他半导体材料高,用它不仅可以制作发光二极管、光探测器,还能制作半导体激光器,广泛应用于光通信、光计算机和空间技术,开发前景令人鼓舞。
与任何半导体材料一样,砷化镓材料对于杂质元素十分敏感,必须精细纯化。和硅、锗等元素半导体不同的是它还要确保准确的化学配比,否则将影响材料的电学性质。
基于以上原因,砷化镓单晶的制备工艺复杂,成本高昂。我国曾在人造卫星上利用微重力条件进行砷化镓单晶的生长,取得了成功。此外,薄膜外延生长技术,可以精确控制单晶薄膜的厚度和电阻率,在制备半导体材料和器件中越来越受到重视。
短短十几年,仅美国研究和开发的砷化镓产品已逾千种。根据90年代末国际砷化镓集成电路会议的预测,砷化镓集成电路的市场销售额将每年翻一番,形成数十亿美元的规模。砷化镓及其代表的Ⅲ—Ⅳ族化合物半导体家族均身怀绝技,有待于进一步开发。
❹ 元素周期表中能能用于制造半导体材料的元素有哪些
大多数类金属都可以。比较常见的有硅(Si)、锗(Ge)、镓(Ga)等。其中硅和锗一般使用其内单质容,而镓则使用其砷化物砷化镓(GaAs)作为半导体材料。砷化镓是一种重要的半导体材料。属Ⅲ-Ⅴ族化合物半导体。属闪锌矿型晶格结构,禁带宽度是1.4电子伏。不过砷化镓也有不足之处,即其热稳定性不好,高温分解,限制了其普及运用。
❺ 半导体的主要材料是什么
半导体:常温下导电性能介于导体(conctor)与绝缘体(insulator)之间的材料专。
主要材料:
元素半属导体:锗和硅是最常用的元素半导体;
化合物半导体:包括第Ⅲ和第Ⅴ族化合物(砷化镓、磷化镓等)、第Ⅱ和第Ⅵ族化合物( 硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。
技术科研领域:
(1)集成电路
它是半导体技术发展中最活跃的一个领域,已发展到大规模集成的阶段。在几平方毫米的硅片上能制作几万只晶体管,可在一片硅片上制成一台微信息处理器,或完成其它较复杂的电路功能。集成电路的发展方向是实现更高的集成度和微功耗,并使信息处理速度达到微微秒级。
(2)微波器件
半导体微波器件包括接收、控制和发射器件等。毫米波段以下的接收器件已广泛使用。在厘米波段,发射器件的功率已达到数瓦,人们正在通过研制新器件、发展新技术来获得更大的输出功率。
(3)光电子器件
半导体发光、摄象器件和激光器件的发展使光电子器件成为一个重要的领域。它们的应用范围主要是:光通信、数码显示、图象接收、光集成等。
❻ 半导体的类型
硅
结晶型的硅是暗黑蓝色的,很脆,是典型的半导体。化学性质非常稳定。在常温下,除氟化氢以外,很难与其他物质发生反应。
硅的用途:
①高纯的单晶硅是重要的半导体材料。在单晶硅中掺入微量的第IIIA族元素,形成p型硅半导体;掺入微量的第VA族元素,形成n型和p型半导体结合在一起,就可做成太阳能电池,将辐射能转变为电能。在开发能源方面是一种很有前途的材料。
②金属陶瓷、宇宙航行的重要材料。将陶瓷和金属混合烧结,制成金属陶瓷复合材料,它耐高温,富韧性,可以切割,既继承了金属和陶瓷的各自的优点,又弥补了两者的先天缺陷。 可应用于军事武器的制造第一架航天飞机“哥伦比亚号”能抵挡住高速穿行稠密大气时磨擦产生的高温,全靠它那三万一千块硅瓦拼砌成的外壳。
③光导纤维通信,最新的现代通信手段。用纯二氧化硅拉制出高透明度的玻璃纤维,激光在玻璃纤维的通路里,无数次的全反射向前传输,代替了笨重的电缆。光纤通信容量高,一根头发丝那么细的玻璃纤维,可以同时传输256路电话,它还不受电、磁干扰,不怕窃听,具有高度的保密性。光纤通信将会使 21世纪人类的生活发生革命性巨变。
④性能优异的硅有机化合物。例如有机硅塑料是极好的防水涂布材料。在地下铁道四壁喷涂有机硅,可以一劳永逸地解决渗水问题。在古文物、雕塑的外表,涂一层薄薄的有机硅塑料,可以防止青苔滋生,抵挡风吹雨淋和风化。天安门广场上的人民英雄纪念碑,便是经过有机硅塑料处理表面的,因此永远洁白、清新。
发现
1822年,瑞典化学家白则里用金属钾还原四氟化硅,得到了单质硅。
[编辑]
名称由来
源自英文silica,意为“硅石”。
[编辑]
分布
硅主要以化合物的形式,作为仅次于氧的最丰富的元素存在于地壳中,约占地表岩石的四分之一,广泛存在于硅酸盐和硅石中。
[编辑]
制备
工业上,通常是在电炉中由碳还原二氧化硅而制得。
化学反应方程式:
SiO2 + 2C → Si + 2CO
这样制得的硅纯度为97~98%,叫做金属硅。再将它融化后重结晶,用酸除去杂质,得到纯度为99.7~99.8%的金属硅。如要将它做成半导体用硅,还要将其转化成易于提纯的液体或气体形式,再经蒸馏、分解过程得到多晶硅。如需得到高纯度的硅,则需要进行进一步的提纯处理。
[编辑]
同位素
已发现的硅的同位素共有12种,包括硅25至硅36,其中只有硅28,硅29,硅30是稳定的,其他同位素都带有放射性。
[编辑]
用途
硅是一种半导体材料,可用于制作半导体器件和集成电路。还可以合金的形式使用(如硅铁合金),用于汽车和机械配件。也与陶瓷材料一起用于金属陶瓷中。还可用于制造玻璃、混凝土、砖、耐火材料、硅氧烷、硅烷。
硅的特性 铝 - 硅 - 磷
碳
硅
锗
?
元素周期表
总体特性
名称, 符号, 序号 硅、Si、14
系列 类金属
族, 周期, 元素分区 14族(IVA), 3, p
密度、硬度 2330 kg/m3、6.5
颜色和外表 深灰色、带蓝色调
地壳含量 25.7%
原子属性
原子量 28.0855 原子量单位
原子半径(计算值) 110(111)pm
共价半径 111 pm
范德华半径 210 pm
价电子排布 [氖]3s23p2
电子在每能级的排布 2,8,4
氧化价(氧化物) 4(两性的)
晶体结构 面心立方
物理属性
物质状态 固态
熔点 1687 K(1414 °C)
沸点 3173 K(2900 °C)
摩尔体积 12.06×10-6m3/mol
汽化热 384.22 kJ/mol
熔化热 50.55 kJ/mol
蒸气压 4.77 帕(1683K)
声速 无数据
其他性质
电负性 1.90(鲍林标度)
比热 700 J/(kg·K)
电导率 2.52×10-4 /(米欧姆)
热导率 148 W/(m·K)
第一电离能 786.5 kJ/mol
第二电离能 1577.1 kJ/mol
第三电离能 3231.6 kJ/mol
第四电离能 4355.5 kJ/mol
第五电离能 16091 kJ/mol
第六电离能 19805 kJ/mol
第七电离能 23780 kJ/mol
第八电离能 29287 kJ/mol
第九电离能 33878 kJ/mol
第十电离能 38726 kJ/mol
最稳定的同位素
同位素 丰度 半衰期 衰变模式 衰变能量
MeV 衰变产物
28Si 92.23 % 稳定
29Si 4.67 % 稳定
30Si 3.1 % 稳定
32Si 人造 276年 β衰变 0.224 32P
核磁公振特性
29Si
核自旋 1/2
元素名称:硅
元素原子量:28.09
元素类型:非金属
发现人:贝采利乌斯 发现年代:1823年
发现过程:
1823年,瑞典的贝采利乌斯,用氟化硅或氟硅酸钾与钾共热,得到粉状硅。
元素描述:
由无定型和晶体两种同素异形体。具有明显的金属光泽,呈灰色,密度2.32-2.34克/厘米3,熔点1410℃,沸点2355℃,具有金刚石的晶体结构,电离能8.151电子伏特。加热下能同单质的卤素、氮、碳等非金属作用,也能同某些金属如Mg、Ca、Fe、Pt等作用。生成硅化物。不溶于一般无机酸中,可溶于碱溶液中,并有氢气放出,形成相应的碱金属硅酸盐溶液,于赤热温度下,与水蒸气能发生作用。硅在自然界分布很广,在地壳中的原子百分含量为16.7%。是组成岩石矿物的一个基本元素,以石英砂和硅酸盐出现。
元素来源:
用镁还原二氧化硅可得无定形硅。用碳在电炉中还原二氧化硅可得晶体硅。电子工业中用的高纯硅则是用氢气还原三氯氢硅或四氯化硅而制得。
元素用途:
用于制造高硅铸铁、硅钢等合金,有机硅化合物和四氯化硅等,是一种重要的半导体材料,掺有微量杂质得硅单晶可用来制造大功率的晶体管,整流器和太阳能电池等。
元素辅助资料:
硅在地壳中的含量是除氧外最多的元素。如果说碳是组成一切有机生命的基础,那么硅对于地壳来说,占有同样的位置,因为地壳的主要部分都是由含硅的岩石层构成的。这些岩石几乎全部是由硅石和各种硅酸盐组成。
长石、云母、黏土、橄榄石、角闪石等等都是硅酸盐类;水晶、玛瑙、碧石、蛋白石、石英、砂子以及燧石等等都是硅石。但是,硅与氧、碳不同,在自然界中没有单质状态存在。这就注定它的发现比碳和氧晚。
拉瓦锡曾把硅土当成不可分割的物质——元素。
1823年,贝齐里乌斯将氟硅酸钾(K2SiF6)与过量金属钾共热制得无定形硅。尽管之前也有不少科学家也制得过无定形硅,但直到贝齐里乌斯将制得的硅在氧气中燃烧,生成二氧化硅——硅土,硅才被确定为一种元素。硅被命名为silicium,元素符号是Si。
【gui】
硅
silicon;
硅
guī
〈名〉
一种四价的非金属元素,以化合物的形式,作为仅次于氧的最丰富的元素存在于地壳中,通常是在电炉中由碳还原二氧化硅而制得的,主要以合金的形式使用(如硅铁合金),也与陶瓷材料一起用于金属陶瓷中,或用作半导体材料(如在晶体管中)和光生电池的元件 [silicon]――元素符号Si
一种非金属元素,是一种半导体材料,可用于制作半导体器件和集成电路。旧称“矽”。
元素符号Si,旧称矽,原子序数14,相对原子质量28.09,有无定形和晶体两种同素异形体。
晶体硅为钢灰色,无定形硅为黑色,密度2.4g/cm3,熔点1420℃,沸点2355℃,晶体硅属于原子晶体,硬而有光泽,有半导体性质。硅的化学性质比较活泼,在高温下能与氧气等多种元素化合,不溶于水、硝酸和盐酸,溶于氢氟酸和碱液,用于造制合金如硅铁、硅钢等,单晶硅是一种重要的半导体材料,用于制造大功率晶体管、整流器、太阳能电池等。硅在自然界分布极广,地壳中约含27.6%,主要以二氧化硅和硅酸盐的形式存在。
硅,原子序数14,原子量28.0855,元素名来源于拉丁文,原意是“燧石”。1823年瑞典化学家贝采利乌斯首先分离和描述硅元素。硅约占地壳总重量的27.72%,仅次于氧。自然界中的硅都以含氧化合物的形式存在。常见的有石英、水晶、沙子等。
硅有晶态和无定形两种形式。晶态硅具有金刚石晶格,硬而脆,熔点1410°C,沸点2355°C,密度2.32~2.34克/厘米³,硬度为7。无定形硅是一种灰黑色粉末,实际是微晶体。晶态硅的电导率不及金属,且随温度升高而增加,具有明显的半导体性质。
硅在常温下不活泼,与空气、水和酸等没有明显作用;在加热下,能与卤素反应生成四卤化硅;650°C,时硅开始与氧完全反应;硅单质在高温下还能与碳、氮、硫等非金属单质反应;硅可间接生成一系列硅的氢化物;硅还能与钙、镁、铁等化合,生成金属硅化物。
超纯的单晶硅可作半导体材料。粗的单晶硅及其金属互化物组成的合金,常被用来增强铝、镁、铜等金属的强度。
参考资料:http://ke..com/view/4748.htm
❼ 什么是元素半导体呢在元素周期表中有哪些元素为半导体材料呢
锗、硅、硒、砷化镓及许多金属氧化物和金属硫化物等物体,它们的导电能力介于导体和绝缘体之间,叫做半导体.
锗、硅、硒、砷 镓
❽ 元素半导体的构成
具有半导体特性的元素,如硅、锗、硼、硒、碲、碳、碘等组成的材料。其导电能力介乎导体和绝缘体之间。一般电阻率在10-7~10-3之间。主要采用直拉法、区熔法或外延法制备。工业上应用最多的是硅、锗、硒。用于制作各种晶体管、整流器、集成电路、太阳能电池等方面。其他硼、碳(金刚石、石墨)、碲、碘及红磷、灰砷、灰锑、灰铅、硫也是半导体,但都尚未得到应用。
❾ 适合做半导体的元素有哪些
硅
❿ 元素周期表里面哪些是半导体元素
在金属元素和非金属元素分界线的那一道线上,都是半导体,具体的为:
硼、硅、锗、砷、锑、碲、钋