当前位置:首页 » 半导体业 » 半导体结深是什么

半导体结深是什么

发布时间: 2021-01-09 14:17:02

半导体材料中,离子注入与离子掺杂有什么区别

离子掺杂应该就是通过离子注入工艺来实现的包括施主杂质或受主版杂质的掺杂,掺杂方式权还有扩散掺杂,不过精确度不高而且掺杂时间过长,大部分的半导体或面板等行业都是离子注入方式。
离子注入的优点有1.纯度高:离子是通过磁分析器选出来的;2.均匀度好:同一平面均匀度一般可保证在±3%;3.能够精确控制注入剂量和深度;4.温度较低,不会发生热缺陷;5.能够利用PR胶或金属作为掩膜板进行选择性区域注入。等等
缺点:很深的注入不能实现;注入后会对半导体晶格产生损伤,但可以通过退火来修复。
用途:集成电路对半导体电学特性的控制,金属的改性等等

❷ 半导体外延生长有哪些方式

外延(Epitaxy, 简称Epi)工艺是指在单晶衬底上生长一层跟衬底具有相同晶格排列的单晶材料,外延层可以是同质外延层(Si/Si),也可以是异质外延层(SiGe/Si 或SiC/Si等);同样实现外延生长也有很多方法,包括分子束外延(MBE),超高真空化学气相沉积(UHV/CVD),常压及减压外延(ATM & RP Epi)等等。本文仅介绍广泛应用于半导体集成电路生产中衬底为硅材料的硅(Si)和锗硅(SiGe)外延工艺。
根据生长方法可以将外延工艺分为两大类(表1):全外延(Blanket Epi)和选择性外延(Selective Epi, 简称SEG)。工艺气体中常用三种含硅气体源:硅烷(SiH4),二氯硅烷(SiH2Cl2, 简称DCS) 和三氯硅烷(SiHCl3, 简称TCS);某些特殊外延工艺中还要用到含Ge和C的气体锗烷(GeH4)和甲基硅烷(SiH3CH3);选择性外延工艺中还需要用到刻蚀性气体氯化氢(HCl),反应中的载气一般选用氢气(H2)。

外延选择性的实现一般通过调节外延沉积和原位(in-situ)刻蚀的相对速率大小来实现,所用气体一般为含氯(Cl)的硅源气体DCS,利用反应中Cl原子在硅表面的吸附小于氧化物或者氮化物来实现外延生长的选择性;由于SiH4不含Cl原子而且活化能低,一般仅应用于低温全外延工艺;而另外一种常用硅源TCS蒸气压低,在常温下呈液态,需要通过H2鼓泡来导入反应腔,但价格相对便宜,常利用其快速的生长率(可达到5 um/min)来生长比较厚的硅外延层,这在硅外延片生产中得到了广泛的应用。IV族元素中Ge的晶格常数(5.646A与Si的晶格常数(5.431A差别最小,这使得SiGe与Si工艺易集成。在单晶Si中引入Ge形成的SiGe单晶层可以降低带隙宽度,增大晶体管的特征截止频率fT(cut-off frequency),这使得它在无线及光通信高频器件方面应用十分广泛;另外在先进的CMOS集成电路工艺中还会利用Ge跟Si的晶格常数失配(4%)引入的晶格应力来提高电子或者空穴的迁移率(mobility),从而增大器件的工作饱和电流以及响应速度,这正成为各国半导体集成电路工艺研究中的热点。由于本征硅的导电性能很差,其电阻率一般在200ohm-cm以上,通常在外延生长的同时还需要掺入杂质气体(dopant)来满足一定的器件电学性能。杂质气体可以分为N型和P型两类:常用N型杂质气体包括磷烷(PH3)和砷烷(AsH3),而P型则主要是硼烷(B2H6)。
硅及锗硅外延工艺在现代集成电路制造中应用十分广泛,概括起来主要包括:
1.硅衬底外延:硅片制造中为了提高硅片的品质通常在硅片上外延一层纯净度更高的本征硅;或者在高搀杂硅衬底上生长外延层以防止器件的闩锁(latch up)效应。
2.异质结双极晶体管(Hetero-junction Bipolar Transistor,简称HBT)基区(base)异质结SiGe外延(图1):其原理是在基区掺入Ge组分,通过减小能带宽度,从而使基区少子从发射区到基区跨越的势垒高度降低,从而提高发射效率γ, 因而,很大程度上提高了电流放大系数β。在满足一定的放大系数的前提下,基区可以重掺杂,并且可以做得较薄,这样就减少了载流子的基区渡越时间,从而提高器件的截止频率fT (Cut-Off Frequency),这正是异质结在超高速,超高频器件中的优势所在。

3.CMOS源(source)漏(drain)区选择性Si/SiGe外延:进入90nm工艺时代后,随着集成电路器件尺寸的大幅度减小,源漏极的结深越来越浅,需要采用选择性外延技术 (SEG)以增厚源漏极(elevated source/drain)来作为后续硅化(silicide)反应的牺牲层(sacrificial layer) (图2),从而降低串联电阻,有报道称这项技术导致了饱和电流(Idsat)有15%的增加。

而对于正在研发中的65/45nm技术工艺,有人采用对PMOS源漏极刻蚀后外延SiGe层来引入对沟道的压应力(compressive stress) (图3),以提高空穴(hole)的迁移率(mobility),据报道称实现了饱和电流(Idsat)35%的增加。

应变硅(strain silicon)外延:在松弛(relaxed)的SiGe层上面外延一层单晶Si,由于Si跟SiGe晶格常数失配而导致Si单晶层受到下面SiGe层的拉伸应力(tensile stress)而使得电子的迁移率(mobility)得到提升(图4),这就使得NMOS在保持器件尺寸不变的情况下饱和电流(Idsat)得到增大,而Idsat的增大意味着器件响应速度的提高,这项技术正成为各国研究热点。
一般而言,一项完整的外延工艺包括3个环节:
首先,根据需要实现的工艺结果对硅片进行预处理,包括去除表面的自然氧化层及硅片表面的杂质,对于重搀杂衬底硅片则必须考虑是否需要背封(backseal)以减少后续外延生长过程中的自搀杂。
然后在外延工艺过程中需要对程式进行优化,如今先进的外延设备一般为单片反应腔,能在100秒之内将硅片加热到1100℃以上,利用先进的温度探测装置能将工艺温度偏差控制在2度以内,反应气体则可通过质量流量计(MFC)来使得流量得到精准控制。在进行外延沉积之前一般都需要H2烘烤(bake)这一步,其目的在于原位(in-situ)去除硅片表面的自然氧化层和其他杂质,为后续的外延沉积准备出洁净的硅表面状态。
最后在外延工艺完成以后需要对性能指标进行评估,简单的性能指标包括外延层厚度和电特性参数, 片内厚度及电特性均匀度(uniformity),片与片间的重复性(repeatability),杂质颗粒(particle)数目以及污染(contamination)
;在工业生产中经常要求片内膜厚及电性的均匀度<1.5%(1σ),对硅片厂家来说经常还要考查外延层的扩展电阻率曲线(SRP)以确定是否有污染存在及污染物杂质的量。特别地,对于SiGe工艺我们经常还需要测量Ge的含量及其深度分布,对于有搀杂的工艺我们还需要知道搀杂原子的含量及深度分布。另外晶格缺陷(defect)也是我们必须考虑的问题,一般而言,常常出现的有四种缺陷,包括薄雾(haze),滑移线(slip line), 堆跺层错(stacking fault) 和穿刺(spike),这些缺陷的存在对器件性能有很大影响,可以导致器件漏电流增大甚至器件完全失效而成为致命缺陷(killer effect)。一般来讲消除这些缺陷的办法是检查反应腔体漏率是否足够低(<1mTorr/min),片内工艺温度分布是否均匀,承载硅片的基座或准备的硅片表面是否洁净、平坦等。
经过外延层性能指标检测以后我们还需要对外延工艺进一步优化,以满足特定器件的工艺要求。
硅衬底外延:硅片制造中为了提高硅片的品质通常在硅片上外延一层纯净度更高的本征硅;或者在高搀杂硅衬底上生长外延层以防止器件的闩锁(latch up)效应。

❸ PN结是什么

PN结( junction)。采用不同的掺杂工艺,通过扩散作用,将P型半导体与N型半导体制作在同一块半导体(通常是硅或锗)基片上,在它们的交界面就形成空间电荷区称PN结。PN结具有单向导电性。P是positive的缩写,N是negative的缩写,表明正荷子与负荷子起作用的特点。一块单晶半导体中 ,一部分掺有受主杂质是P型半导体,另一部分掺有施主杂质是N型半导体时 ,P 型半导体和N型半导体的交界面附近的过渡区称为PN结。PN结有同质结和异质结两种。用同一种半导体材料制成的 PN 结叫同质结 ,由禁带宽度不同的两种半导体材料制成的PN结叫异质结。
制造PN结的方法有合金法、扩散法、离子注入法和外延生长法等。制造异质结通常采用外延生长法。 P型半导体(P指positive,带正电的):由单晶硅通过特殊工艺掺入少量的三价元素组成,会在半导体内部形成带正电的空穴; N型半导体(N指negative,带负电的):由单晶硅通过特殊工艺掺入少量的五价元素组成,会在半导体内部形成带负电的自由电子。 在 P 型半导体中有许多带正电荷的空穴和带负电荷的电离杂质。在电场的作用下,空穴是可以移动的,而电离杂质(离子)是固定不动的 。N 型半导体中有许多可动的负电子和固定的正离子。当P型和N型半导体接触时,在界面附近空穴从P型半导体向N型半导体扩散,电子从N型半导体向P型半导体扩散。空穴和电子相遇而复合,载流子消失。因此在界面附近的结区中有一段距离缺少载流子,却有分布在空间的带电的固定离子,称为空间电荷区 。P 型半导体一边的空间电荷是负离子 ,N 型半导体一边的空间电荷是正离子。正负离子在界面附近产生电场,这电场阻止载流子进一步扩散 ,达到平衡。 在PN结上外加一电压 ,如果P型一边接正极 ,N型一边接负极,电流便从P型一边流向N型一边,空穴和电子都向界面运动,使空间电荷区变窄,电流可以顺利通过。如果N型一边接外加电压的正极,P型一边接负极,则空穴和电子都向远离界面的方向运动,使空间电荷区变宽,电流不能流过。这就是PN结的单向导电性。 PN结加反向电压时 ,空间电荷区变宽 , 区中电场增强。反向电压增大到一定程度时,反向电流将突然增大。如果外电路不能限制电流,则电流会大到将PN结烧毁。反向电流突然增大时的电压称击穿电压。基本的击穿机构有两种,即隧道击穿(也叫齐纳击穿)和雪崩击穿,前者击穿电压小于6V,有负的温度系数,后者击穿电压大于6V,有正的温度系数。 PN结加反向电压时,空间电荷区中的正负电荷构成一个电容性的器件。它的电容量随外加电压改变。 根据PN结的材料、掺杂分布、几何结构和偏置条件的不同,利用其基本特性可以制造多种功能的晶体二极管。如利用PN结单向导电性可以制作整流二极管、检波二极管和开关二极管,利用击穿特性制作稳压二极管和雪崩二极管;利用高掺杂PN结隧道效应制作隧道二极管;利用结电容随外电压变化效应制作变容二极管。使半导体的光电效应与PN结相结合还可以制作多种光电器件。如利用前向偏置异质结的载流子注入与复合可以制造半导体激光二极管与半导体发光二极管;利用光辐射对PN结反向电流的调制作用可以制成光电探测器;利用光生伏特效应可制成太阳电池。此外,利用两个 PN结之间的相互作用可以产生放大,振荡等多种电子功能 。PN结是构成双极型晶体管和场效应晶体管的核心,是现代电子技术的基础。在二级管中广泛应用。 PN结的平衡态,是指PN结内的温度均匀、稳定,没有外加电场、外加磁场、光照和辐射等外界因素的作用,宏观上达到稳定的平衡状态.
PN结的形成
在一块本征半导体的两侧通过扩散不同的杂质,分别形成N型半导体和P型半导体。此时将在N型半导体和P型半导体的结合面上形成如下物理过程: 因浓度差 ↓ 多子的扩散运动®由杂质离子形成空间电荷区 ↓ 空间电荷区形成形成内电场 ↓ ↓ 内电场促使少子漂移 内电场阻止多子扩散 最后,多子的扩散和少子的漂移达到动态平衡。在P型半导体和N型半导体的结合面两侧,留下离子薄层,这个离子薄层形成的空间电荷区称为PN结。PN结的内电场方向由N区指向P区。在空间电荷区,由于缺少多子,所以也称耗尽层。PN结形成的过程可参阅图01.06。 图01.06 PN结的形成过程(动画1-3)如打不开点这儿(压缩后的)
PN结的单向导电性
PN结具有单向导电性,若外加电压使电流从P区流到N区,PN结呈低阻性,所以电流大;反之是高阻性,电流小。 如果外加电压使: PN结P区的电位高于N区的电位称为加正向电压,简称正偏; PN结P区的电位低于N区的电位称为加反向电压,简称反偏。 (1) PN结加正向电压时的导电情况 外加的正向电压有一部分降落在PN结区,方向与PN结内电场方向相反,削弱了内电场。于是,内电场对多子扩散运动的阻碍减弱,扩散电流加大。扩散电流远大于漂移电流,可忽略漂移电流的影响,PN结呈现低阻性。 (2) PN结加反向电压时的导电情况 外加的反向电压有一部分降落在PN结区,方向与PN结内电场方向相同,加强了内电场。内电场对多子扩散运动的阻碍增强,扩散电流大大减小。此时PN结区的少子在内电场作用下形成的漂移电流大于扩散电流,可忽略扩散电流,PN结呈现高阻性。 在一定的温度条件下,由本征激发决定的少子浓度是一定的,故少子形成的漂移电流是恒定的,基本上与所加反向电压的大小无关,这个电流也称为反向饱和电流。 PN结加正向电压时,呈现低电阻,具有较大的正向扩散电流;PN结加反向电压时,呈现高电阻,具有很小的反向漂移电流。由此可以得出结论:PN结具有单向导电性。
PN结的电容效应
PN结具有一定的电容效应,它由两方面的因素决定。一是势垒电容CB ,二是扩散电容CD 。 (1) 势垒电容CB 势垒电容是由空间电荷区的离子薄层形成的。当外加电压使PN结上压降发生变化时,离子薄层的厚度也相应地随之改变,这相当PN结中存储的电荷量也随之变化,犹如电容的充放电。势垒电容的示意图见图01.09。 图01.09 势垒电容示意图 (2) 扩散电容CD 扩散电容是由多子扩散后,在PN结的另一侧面积累而形成的。因PN结正偏时,由N区扩散到P区的电子,与外电源提供的空穴相复合,形成正向电流。刚扩散过来的电子就堆积在 P 区内紧靠PN结的附近,形成一定的多子浓度梯度分布曲线。反之,由P区扩散到N区的空穴,在N区内也形成类似的浓度梯度分布曲线。扩散电容的示意图如图01.10所示。 当外加正向电压不同时,扩散电流即外电路电流的大小也就不同。所以PN结两侧堆积的多子的浓度梯度分布也不同,这就相当电容的充放电过程。势垒电容和扩散电容均是非线性电容。
编辑本段击穿特性
当反向电压增大到一定值时,PN结的反向电流将随反向电压的增加而急剧增 加,这种现象称为PN结的击穿,反向电流急剧增加时所对应的电压称为反向击穿电压,如上图所示, PN结的反向击穿有雪崩击穿和齐纳击穿两种。
1、雪崩击穿
阻挡层中的载流子漂移速度随内部电场的增强而相应加快到一定程度时,其动能足以把束缚在共价键中的价电子碰撞出来,产生自由电子—空穴对,新产生的载流子在强电场作用下,再去碰撞其它中性原子,又产生新的自由电子—空穴对,如此连锁反应,使阻挡层中的载流子数量急 剧增加,象雪崩一样。雪崩击穿发生在掺杂浓度较低的PN结中,阻挡层宽,碰撞电离的机会较多,雪崩击穿的击穿电压高。
2、齐纳击穿
当PN结两边掺杂浓度很高时,阻挡层很薄,不易产生碰撞电离,但当加不大的反向电压时,阻挡层中的电场很强,足以把中性原子中的价电子直接从共价键中拉出来,产生新的自由电子—空穴对,这个过程 称为场致激发。 一般击穿电压在6V以下是齐纳击穿,在6V以上是雪崩击穿。
3、击穿电压的温度特性
温度升高后,晶格振动加剧,致使载流子运动的平 均自由路程缩短,碰撞前动能减小,必须加大反向电压才能发生雪崩击穿具有正的温度系数,但温度升高,共价键中的价电子能量状态高,从而齐纳击穿电压随温度升高而降低,具有负的温度系数。6V左右两种击穿将会同时发生,击穿电压的温度系数趋于零。
4、稳压二极管
PN结一旦击穿后,尽管反向电流急剧变化,但其端电压几 乎不变(近似为V(BR),只要限制它的反向电流,PN结 就不会烧坏,利用这一特性可制成稳压二极管,其电路符号及伏 安特性如上图所示:其主要参数有: VZ 、 Izmin 、 Iz 、 Izmax

编辑本段电容特性
PN结除具有非线性电阻特性外,还具有非线性电容特性,主要有势垒电容和扩散电容。
1、势垒电容
势垒区类似平板电容器,其交界两侧存储着数值相等极性相反的离子电荷,电荷量随外加电压而变化,称为势垒电容,用CT表示。 CT = - dQ/dV PN结有突变结和缓变结,现考虑突变结情况(缓变结参见《晶体管原 理》),PN结相当于平板电容器,虽然外加电场会使势垒区变宽或变窄 但这个变化比较小可以忽略, 则CT=εS/L,已知动态平衡下阻挡层的宽度L0,代入上式可得:
CT不是恒值,而是随V而变化,利用该特性可制作变容二极管。
2、 扩散电容
多子在扩散过程中越过PN结成为另一方的少子, 当PN结处于 平衡状态(无外加电压)时的少子称为平衡少子 可以认为阻挡层以外的区域内平衡少子浓度各处是一样的,当PN结处于正向偏置时,N区的多子自由电子扩散到P区成为 P区的非平衡少子,由于浓度差异还会向P 区深处扩散,距交界面越远,非平衡少子浓度越低,其分布曲线见[PN 结的伏 安特性]。当外加正向电压增大时,浓度分布曲线上移,两边 非平 衡少子浓度增加即电荷量增加,为了维持电中性,中性区内的非平衡多子浓度也相应增加,这就是说,当外加电压增加时,P区和N区各自存储的空穴和自由电子电荷量也增加,这种效应相当于在PN结上并联一个电容,由于它是载流子扩散引起的,故称之为扩散电容CD,由半导体物理推导得 CD=( I + Is)τp/VT 推导过程参见《晶体管原理》。 当外加反向电压时 I = Is , CD趋于零。
3、 PN结电容
PN结的总电容Cj为CT和CD两者之和Cj = CT+CD ,外加正向电 压CD很大, Cj以扩散电容为主(几十pF到几千pF) ,外加反向电压CD趋于零,Cj以势垒电容为主(几pF到几十pF到)。
4、变容二极管
PN结反偏时,反向电流很小,近似开路,因此是一个主要由势垒电容构成的较理想的电容器件,且其增量电容值随外加电压而变化 利用该特性可制作变容二极管,变容二极管在非线性电路中应用较广泛, 如压控振荡器、频率调制等。

❹ 半导体扩散工艺是什么

半导体扩散工艺。扩散技术目的在于控制半导体中特定区域内杂质的类型、浓度、深度和PN结。在集成电路发
展初期是半导体器件生产的主要技术之一。但随着离子注入的出现,扩散工艺在制备浅结、低浓度掺杂和控制精度等方面的巨大劣势日益突出,在制造技术中的使用已大大降低。
3.1 扩散机构
3.1.1 替位式扩散机构
这种杂质原子或离子大小与Si原子大小差别不大,它沿着硅晶体内晶格空位跳跃前进扩散,杂质原子扩散时占据晶格格点的正常位置,不改变原来硅材料的晶体结构。硼、磷、砷等是此种方式。

3.1.2 填隙式扩散机构
这种杂质原子大小与Si原子大小差别较大,杂质原子进入硅晶体后,不占据晶格格点的正常位置,而是从一个硅原子间隙到另一个硅原子间隙逐次跳跃前进。镍、铁等重金属元素等是此种方式。由于CMOS是由PMOS和NMOS组成,因此需要在一种衬底上制造出另一种型号的衬底,才可以在一种型号的硅片上同时制造出N管、P管,在选择注入后的推阱工艺就可以在硅片上制出P阱、N阱;由于推阱一般需要有一定的结深,而杂质在高温下的扩散速率较大,因此推阱工艺往往需要在较高的温度(1150C)下进行,以缩短工艺时间,提高硅片的产出率。 阱电阻:用来监控推阱后N(或P)阱电阻的大小,阱电阻的大小会对制作在N(或P)阱里的晶体管的栅开启电压及击穿电压造成直接影响;但电阻控制片的制作由于有一定的制作流程,因此电阻有时会受制备工艺的影响。

❺ 如何测试太阳能电池的时间

太阳能光伏电池实验讲义
、实验目
1、解pn结基本结构与工作原理;
2、解太阳能电池基本结构理解工作原理;
3、掌握pn结伏安特性及伏安特性温度依赖关系;
4、掌握太阳能电池基本特性参数测试原理与解光源波、温度等素太阳能电池
特性影响;
5、通析pn结、太阳能电池基本特性参数测试数据进步熟悉实验数据析与处理析实验数据与理论结间存差异原
二、实验原理
1、光伏特效应
半导体材料类特殊材料宏观电性质说导电能力导体绝缘体间导电能力随外界环境(温度、光照等)发剧烈变化半导体材料具负带电阻温度系数材料结构特点说类材料具半满导带、价带半满带隙温度、光照等素使价带电跃迁导带改变材料电性质通情况都需要半导体材料进行必要掺杂处理调整电特性便制作性能更稳定、灵敏度更高、功耗更低电器件基于半导体材料电器件核结构通pn结pn结简单说p型半导体n型半导体基础区域太阳能电池本质pn结
见太阳能电池结构说种浅结深、面积pn结太阳能电池所能够完光电转换程核物理效应光伏特效应种效应半导体材料种通性图1所示特定频率光辐照块非均匀半导体由于内建电场作用载流重新布导致半导体材料内部产电势构路产电流种电流叫做光电流种内建电场引起光电效应光伏特效应
非均匀半导体指材料内部杂质布均匀半导体pn结典型例n型半导体材料p型半导体材料接触形pn结pn结根据制备、杂质体内布特征等同类制备合金、扩散、、离注入等等杂质布能线性布能存突变pn结杂质布特征通与制备相联系同制备导致同杂质布特征
图1 pn结结构示意图

1/21页
根据半导体基本理论处于热平衡态pn结结构由p区、n区两者交界区域构维持统费米能级p区内空穴向n区扩散n区内空穴向p区扩散载流定向运导致原电性条件破坏p区积累带负电电离受主n区积累能电离施主载流扩散运结导致p区带负电n区带电界面附近区域形由n区指向p区内建电场相应空间电荷区显两者费米能级统导致电空穴扩散原电空穴扩散导致现空间电荷区内建电场内建电场强度取决于空间电荷区电场强度内建电场具阻止扩散运进步发作用两者具统费米能级扩散运内建电场作用相等p区n区两端产高度qVD势垒理想pn结模型处于热平衡pn结空间电荷区没载流没载流产与复合作用
入射光垂直入射pn结要pn结结深比较浅入射光透pn结区域甚至能深入半导体内部图2所示入射光能量满足关系h??Eg(Eg半导体材料禁带宽度)些光材料本征吸收pn结产电空穴光照条件材料体内产电空穴典型非平衡载流光注入作用光载流p区空穴n区电数载流浓度影响忽略计少数载流产显著影响p区电n区空穴均匀半导体光照射产电空穴快通各种复合机制复合pn结情况所同主要原存内建电场内建电场驱p区光少电向n区运n区光少空穴向p区运种作用两面体现第光少内建电场驱定向运产电流光电流由电电流空穴电流组向都由n区指向p区与内建电场向致;第二光少定向运与扩散运向相反减弱扩散运强度pn结势垒高度降低甚至完全消失宏观效pn结两端产电势光电势

图2 光辐照pn结
光辐照pn结使pn结势垒高度降低甚至消失作用完全等价于pn结两端施加向电压种情况pn结光电池路pn结两端电压叫做路电压Voc闭路种pn结等价于电源应电流Isc称闭路电流光伏特效应光能转化电能程路电压闭路电流两基本参数
2、太阳能电池光照情况电流、电压关系-(暗特性)
太阳能电池依据光伏特效应太阳能或者光能转化电能半导体器件没光照太阳能电池等价于pn结通光照情况太阳能电池电流电压特性叫做暗特性近似光照情况太阳能电池等价于理想p

❻ 如何测试太阳能电池的iv特性曲线

当然是用光伏专用的IV特性曲线测试仪来测,当然如果有时间也可以自己搭建一个小的测试系统,但是精度难保证,而且需要推算STC功率值的,需要内置算法进去。

❼ 半导体材料中,离子注入与离子掺杂有什么区别

离子注入是离子参杂的一种。
随着VLSI器件的发展,到了70年代,器件尺寸不断减内小,结深降到1um以下容,扩散技术有些力不从心。在这种情况下,离子注入技术比较好的发挥其优势。目前,结深小于1um的平面工艺,基本都采用离子注入技术完成掺杂。离子注入技术已经成为VLSI生产中不可缺少的掺杂工艺。
离子注入具有如下的特点:
①可以在较低温度下(400℃)进行,避免高温处理;
②通过控制注入时的电学条件(电流、电压)可以精确控制浓度和结深,更好的实现对杂质分布形状的控制。而且杂质浓度不受材料固溶度的限制;
③可选出一种元素进行注入,避免混入其他杂质;
④可以在较大面积上形成薄而均匀的掺杂层。同一晶片上杂质不均匀性优于1%,且横向掺杂比扩散小的多;
⑤控制离子束的扫描区域,可实现选择注入并进而发展为一种无掩模掺杂技术。

❽ 半导体的实际生产中的基区结深,基区方块电阻对放大是如何影响的

放大系数决定于发射结抄注射效率和基区输运系数两个因素。
发射结注射效率主要由发射区与基区的掺杂浓度之比决定,发射区掺杂浓度越高、基区掺杂浓度越低,注射效率也就越大。
基区输运系数主要由基区宽度决定,宽度越小越好(但要照顾到击穿电压);基区宽度由基区扩散结深和发射结的结深之差来确定。因为发射结的结深是有限的(考虑到浓度不能太低的缘故),所以基区扩散结深越小,基区宽度也就越小。总之,基区的结深越小、方块电阻越大,基区宽度就越小,放大系数也就越大;但是基区的结深还要根据击穿电压的要求来设定。
详见http://blog.163.com/xmx028@126/

❾ 如果要求取电池温度系数,需要进一步获得哪些数据

太阳能光伏电池实验讲义
一、实验目的
1、了解pn结基本结构与工作原理;
2、了解太阳能电池的基本结构,理解工作原理;
3、掌握pn结的伏安特性及伏安特性对温度的依赖关系;
4、掌握太阳能电池基本特性参数测试原理与方法,了解光源波长、温度等因素对太阳能电池
特性的影响;
5、通过分析pn结、太阳能电池基本特性参数测试数据,进一步熟悉实验数据分析与处理的方法,分析实验数据与理论结果间存在差异的原因。
二、实验原理
1、光生伏特效应
半导体材料是一类特殊的材料,从宏观电学性质上说它们导电能力在导体和绝缘体之间,导电能力随外界环境(如温度、光照等)发生剧烈的变化。半导体材料具有负的带电阻温度系数。从材料结构特点说,这类材料具有半满导带、价带和半满带隙,温度、光照等因素可以使价带电子跃迁到导带,改变材料的电学性质。通常情况下,都需要对半导体材料进行必要的掺杂处理,调整它们的电学特性,以便制作出性能更稳定、灵敏度更高、功耗更低的电子器件。基于半导体材料电子器件的核心结构通常是pn结,pn结简单说就是p型半导体和n型半导体的基础区域,太阳能电池本质上就是pn结。
常见的太阳能电池从结构上说是一种浅结深、大面积的pn结。太阳能电池之所以能够完成光电转换过程,核心物理效应是光生伏特效应。这种效应是半导体材料的一种通性。如图1所示,当特定频率的光辐照到一块非均匀半导体上时,由于内建电场的作用,载流子重新分布导致半导体材料内部产生电动势。如果构成回路就会产生电流。这种电流叫做光生电流,这种内建电场引起的光电效应就是光生伏特效应。
非均匀半导体就是指材料内部杂质分布不均匀的半导体。pn结是典型的一个例子。n型半导体材料和p型半导体材料接触形成pn结。pn结根据制备方法、杂质在体内分布特征等有不同的分类。制备方法有合金法、扩散法、生长法、离子注入法等等。杂质分布可能是线性分布的,也可能是存在突变的,pn结的杂质分布特征通常是与制备方法相联系的,不同的制备方法导致不同的杂质分布特征。
图1 pn结结构示意图

1/21页
根据半导体基本理论,处于热平衡态的pn结结构由p区、n区和两者交界区域构成。为了维持统一的费米能级,p区内空穴向n区扩散,n区内空穴向p区扩散。载流子的定向运动导致原来的电中性条件被破坏,p区积累了带有负电的不可动电离受主,n区积累了不可能电离施主。载流子扩散运动的结果导致p区带负电,n区带正电,在界面附近区域形成由n区指向p区的内建电场和相应的空间电荷区。显然,两者费米能级的不统一是导致电子空穴扩散的原因,电子空穴扩散又导致出现空间电荷区和内建电场。而内建电场的强度取决于空间电荷区的电场强度,内建电场具有阻止扩散运动进一步发生的作用。当两者具有统一费米能级后扩散运动和内建电场的作用相等,p区和n区两端产生一个高度为qVD的势垒。理想pn结模型下,处于热平衡的pn结空间电荷区没有载流子,也没有载流子的产生与复合作用。
当有入射光垂直入射到pn结,只要pn结结深比较浅,入射光子会透过pn结区域甚至能深入半导体内部。如图2所示,如果入射光子能量满足关系h#61550;#61619;Eg(Eg为半导体材料的禁带宽度),那么这些光子会被材料本征吸收,在pn结中产生电子空穴对。光照条件下材料体内产生电子空穴对是典型的非平衡载流子光注入作用。光生载流子对p区空穴和n区电子这样的多数载流子的浓度影响是很小的,可以忽略不计。但是对少数载流子将产生显著影响,如p区电子和n区空穴。在均匀半导体中光照射下也会产生电子空穴对,它们很快又会通过各种复合机制复合。在pn结中情况有所不同,主要原因是存在内建电场。内建电场的驱动下p区光生少子电子向n区运动,n区光生少子空穴向p区运动。这种作用有两方面的体现,第一是光生少子在内建电场驱动下定向运动产生电流,这就是光生电流,它由电子电流和空穴电流组成,方向都是由n区指向p区,与内建电场方向一致;第二,光生少子的定向运动与扩散运动方向相反,减弱了扩散运动的强度,pn结势垒高度降低,甚至会完全消失。宏观的效果是在pn结两端产生电动势,也就是光生电动势。

图2 光辐照下的pn结
光辐照pn结会使得pn结势垒高度降低甚至消失,这个作用完全等价于在pn结两端施加正向电压。这种情况下的pn结就是一个光电池。开路下pn结两端的电压叫做开路电压Voc,闭路下这种pn结等价于一个电源,对应的电流Isc称为闭路电流。光生伏特效应就是光能转化为电能的过程,开路电压和闭路电流是两个基本的参数。
2、太阳能电池无光照情况下的电流、电压关系-(暗特性)
太阳能电池是依据光生伏特效应把太阳能或者光能转化为电能的半导体器件。如果没有光照,太阳能电池等价于一个pn结。通常把无光照情况下太阳能电池的电流电压特性叫做暗特性。近似地,可以把无光照情况下的太阳能电池等价于一个理想p

❿ 请问什么是传感器的原理传感器的原理 的定义 又是什么呢

想必大家对传感器的原理这个词感到陌生吧,都不知道它大概的含义是什么呢?现在我们来了解下。什么是传感器的原理 以下几个要注意的:我们在上大学的时候,老师就经常说过传感器的原理 ,现在 刚好用上了, 跟大家 分享下哈! 以前我也不懂得它是什么意思,至从上次听了说过培训过以后,大概懂了一些:现在来了解下哦:什么叫传感器?从广义上讲,传感器就是能感知外界信息并能按一定规律将这些信息转换成可用信号的装置;简单说传感器是将外界信号转换为电信号的装置。所以它由敏感元器件(感知元件)和转换器件两部分组成,有的半导体敏感元器件可以直接输出电信号,本身就构成传感器。敏感元器件品种繁多,就其感知外界信息的原理来讲,可分为①物理类,基于力、热、光、电、磁和声等物理效应。②化学类,基于化学反应的原理。③生物类,基于酶、抗体、和激素等分子识别功能。通常据其基本感知功能可分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类(还有人曾将传感器分46类)。下面对常用的热敏、光敏、气敏、力敏和磁敏传感器及其敏感元件介绍如下。 一 温度传感器及热敏元件 温度传感器主要由热敏元件组成。热敏元件品种教多,市场上销售的有双金属片、铜热电阻、铂热电阻、热电偶及半导体热敏电阻等。以半导体热敏电阻为探测元件的温度传感器应用广泛,这是因为在元件允许工作条件范围内,半导体热敏电阻器具有体积小、灵敏度高、精度高的特点,而且制造工艺简单、价格低廉。1.半导体热敏电阻的工作原理 按温度特性热敏电阻可分为两类,随温度上升电阻增加的为正温度系数热敏电阻,反之为负温度系数热敏电阻。 ⑴ 正温度系数热敏电阻的工作原理 此种热敏电阻以钛酸钡(BaTio3)为基本材料,再掺入适量的稀土元素,利用陶瓷工艺高温烧结尔成。纯钛酸钡是一种绝缘材料,但掺入适量的稀土元素如镧(La)和铌(Nb)等以后,变成了半导体材料,被称半导体化钛酸钡。它是一种多晶体材料,晶粒之间存在着晶粒界面,对于导电电子而言,晶粒间界面相当于一个位垒。当温度低时,由于半导体化钛酸钡内电场的作用,导电电子可以很容易越过位垒,所以电阻值较小;当温度升高到居里点温度(即临界温度,此元件的‘温度控制点’ 一般钛酸钡的居里点为120℃)时,内电场受到破坏,不能帮助导电电子越过位垒,所以表现为电阻值的急剧增加。因为这种元件具有未达居里点前电阻随温度变化非常缓慢,具有恒温、调温和自动控温的功能,只发热,不发红,无明火,不易燃烧,电压交、直流3~440V均可,使用寿命长,非常适用于电动机等电器装置的过热探测。 ⑵ 负温度系数热敏电阻的工作原理 负温度系数热敏电阻是以氧化锰、氧化钴、氧化镍、氧化铜和氧化铝等金属氧化物为主要原料,采用陶瓷工艺制造而成。这些金属氧化物材料都具有半导体性质,完全类似于锗、硅晶体材料,体内的载流子(电子和空穴)数目少,电阻较高;温度升高,体内载流子数目增加,自然电阻值降低。负温度系数热敏电阻类型很多,使用区分低温(-60~300℃)、中温(300~600℃)、高温(>600℃)三种,有灵敏度高、稳定性好、响应快、寿命长、价格低等优点,广泛应用于需要定点测温的温度自动控制电路,如冰箱、空调、温室等的温控系统。 热敏电阻与简单的放大电路结合,就可检测千分之一度的温度变化,所以和电子仪表组成测温计,能完成高精度的温度测量。普通用途热敏电阻工作温度为-55℃~+315℃,特殊低温热敏电阻的工作温度低于-55℃,可达-273℃。 2.热敏电阻的型号我国产热敏电阻是按部颁标准SJ1155-82来制定型号,由四部分组成。 第一部分:主称,用字母‘M’表示 敏感元件。 第二部分:类别,用字母‘Z’表示正温度系数热敏电阻器,或者用字母‘F’表示负温度系数热敏电阻器。 第三部分:用途或特征,用一位数字(0-9)表示。一般数字‘1’表示普通用途,‘2’表示稳压用途(负温度系数热敏电阻器),‘3’表示微波测量用途(负温度系数热敏电阻器),‘4’表示旁热式(负温度系数热敏电阻器),‘5’表示测温用途,‘6’表示控温用途,‘7’表示消磁用途(正温度系数热敏电阻器),‘8’表示线性型(负温度系数热敏电阻器),‘9’表示恒温型(正温度系数热敏电阻器),‘0’表示特殊型(负温度系数热敏电阻器) 第四部分:序号,也由数字表示,代表规格、性能。 往往厂家出于区别本系列产品的特殊需要,在序号后加‘派生序号’,由字母、数字和‘-’号组合而成。3.热敏电阻器的主要参数 各种热敏电阻器的工作条件一定要在其出厂参数允许范围之内。热敏电阻的主要参数有十余项:标称电阻值、使用环境温度(最高工作温度)、测量功率、额定功率、标称电压(最大工作电压)、工作电流、温度系数、材料常数、时间常数等。其中标称电阻值是在25℃零功率时的电阻值,实际上总有一定误差,应在±10%之内。普通热敏电阻的工作温度范围较大,可根据需要从-55℃到+315℃选择,值得注意的是,不同型号热敏电阻的最高工作温度差异很大,如MF11片状负温度系数热敏电阻器为+125℃,而MF53-1仅为+70℃,学生实验时应注意(一般不要超过50℃)。4 实验用热敏电阻选择 首选普通用途负温度系数热敏电阻器,因它随温度变化一般比正温度系数热敏电阻器易观察,电阻值连续下降明显。若选正温度系数热敏电阻器,实验温度应在该元件居里点温度附近。 例MF11普通负温度系数热敏电阻器参数 主要技术参数名称 参数值 MF11热敏电阻符号外形图 标称阻值(kΩ) 10~15 片状外形 符号 额定功率 (W) 0.25 材料常数B范围(k) 1980~3630 温度系数(10-2/℃) -(2.23~4.09) 耗散系数(mW/℃) ≥5 时间常数(s) ≤30 最高工作温度(℃) 125 粗测热敏电阻的值,宜选用量程适中且通过热敏电阻测量电流较小万用表。若热敏电阻10kΩ左右,可以选用MF10型万用表,将其挡位开关拨到欧姆挡R×100,用鳄鱼夹代替表笔分别夹住热敏电阻的两引脚。在环境温度明显低于体温时,读数10.2k ,用手捏住热敏电阻,可看到表针指示的阻值逐渐减小;松开手后,阻值加大,逐渐复原。这样的热敏电阻可以选用(最高工作温度100℃左右)。 几种实用测温传感器 a空调内专用温控传感器:热敏元件封在铜金属中。 b 气温测量传感器二 光传感器及光敏元件 光传感器主要由光敏元件组成。目前光敏元件发展迅速、品种繁多、应用广泛。市场出售的有光敏电阻器、光电二极管、光电三极管、光电耦合器和光电池等。 1.光敏电阻器 光敏电阻器由能透光的半导体光电晶体构成 ,因半导体光电晶体成分不同,又分为可见光光敏电阻(硫化镉晶体)、红外光光敏电阻(砷化镓晶体)、和紫外光光敏电阻(硫化锌晶体)。当敏感波长的光照半导体光电晶体表面,晶体内载流子增加,使其电导率增加(即电阻减小)。 光敏电阻的主要参数: ◆光电流 、亮阻:在一定外加电压下,当有光(100lx照度)照射时,流过光敏电阻的电流称光电流;外加电压与该电流之比为亮阻,一般几kΩ~几十kΩ。 ◆暗电流、暗阻:在一定外加电压下,当无光( 0 lx照度)照射时,流过光敏电阻的电流称暗电流;外加电压与该电流之比为暗阻,一般几百kΩ~几千kΩ以上。 ◆最大工作电压:一般几十伏至上百伏。 ◆环境温度:一般-25℃至 +55℃,有的型号可以-40℃至+70℃。 ◆额定功率(功耗):光敏电阻的亮电流与外电压乘积;可有5mW至300mW多种规格选择。 ◆光敏电阻的主要参数还有响应时间、灵敏度、光谱响应、光照特性、温度系数、伏安特性等。 值得注意的是,光照特性(随光照强度变化的特性)、温度系数(随温度变化的特性)、伏安特性不是线性的,如以CdS(硫化镉)光敏电阻的光阻有时随温度的增加而增大,有时随温度的增加又变小。 硫化镉光敏电阻器的参数: 型号规格 MG41-22 MG42-16 MG44-02 MG45-52 环境温度(℃) -40~+60 -25~+55 -40~+70 -40~+70 额定功率(mW) 20 10 5 200 亮阻,100lx(kΩ) ≤2 ≤50 ≤2 ≤2 暗阻, 0lx(MΩ) ≥1 ≥10 ≥0.2 ≥1 响应时间 (ms) ≤20 ≤20 ≤20 ≤20 最高工作电压(v) 100 50 20 2502 光电二极管 和普通二极管相比,除它的管芯也是一个PN结、具有单向导电性能外,其他均差异很大。首先管芯内的PN结结深比较浅(小于1微米),以提高光电转换能力;第二PN结面积比较大,电极面积则很小,以有利于光敏面多收集光线;第三光电二极管在外观上都有一个用有机玻璃透镜密封、能汇聚光线于光敏面的“窗口”;所以光电二极管的灵敏度和响应时间远远优于光敏电阻。 像这么 专业的问题,现在应该懂了吧,上面是好不容易打的字,要认真看啊,希望大家可以 学习下,是 很有用的哦~我也是通过以上信息学会了怎么样操作传感器的原理 可以 试下哈!以上就是关于传感器的原理的一些分享,希望对你有帮助!亲的认可是我的最大动力哦!觉得还不错的话,可以分享给你身边的朋友!

热点内容
三个字的电影名 发布:2024-08-19 09:10:03 浏览:417
台湾红羊经典电影 发布:2024-08-19 09:02:17 浏览:767
搞笑电影范冰冰梁家辉开战 发布:2024-08-19 08:53:18 浏览:917
免费午夜激情 发布:2024-08-19 08:42:15 浏览:831
40分钟左右的英语电影 发布:2024-08-19 08:28:43 浏览:695
电影宋基美娜 发布:2024-08-19 08:27:04 浏览:942
宿舍都变成女的的电影 发布:2024-08-19 07:59:35 浏览:897
台湾恐怖片丧尸 发布:2024-08-19 07:57:21 浏览:179
免费观看qq群 发布:2024-08-19 07:53:00 浏览:921
4级片名字 发布:2024-08-19 07:39:14 浏览:553