当前位置:首页 » 半导体业 » 宽带隙半导体材料有哪些

宽带隙半导体材料有哪些

发布时间: 2021-01-09 20:35:15

① 的悖论啊!---书上说:ZnO是直接带隙氧化物半导体,具有宽的带隙(3.3eV)。既然是直接带隙,哪来的宽带隙

直接带隙不是指没有带隙,而是指载流子不容易在能带间跳跃。

② 急求资料!!关于氧化锌的半导体材料!!

半导体材料:氧化锌半导瓷 化学式:ZnO

基本概况:ZnO(氧化锌)是一种新型的化合物半导体材料Ⅱ一Ⅵ宽禁带(E =3.37eV)。在常温常压下其是一种非常典型的直接宽禁半导体材料,稳定相是六方纤锌矿结构,其禁带宽度所对应紫外光波长,有希望能够开发出蓝绿光、蓝光、紫外光等等多种发光器件。
氧化锌的能带隙和激子束缚能较大,透明度高,有优异的常温发光性能,在半导体领域的液晶显示器、薄膜晶体管、发光二极管等产品中均有应用。此外,微颗粒的氧化锌作为一种纳米材料也开始在相关领域发挥作用。

晶体数据:
针状体根部直径 (µm) 0.1~10
比热 (J/g·k) 5.52
耐热性能 (℃)
1720(升华)
真实密度 (g/cm3) 5.8
表观密度 (g/cm3) 0.01~0.5
粉体电阻率 (Ω·cm) 104~109
介电常数 (实部) 4.5~30
介电常数 (虚部) 20~135
拉伸强度 (MPa) 1.2×104
弹性模量 (MPa) 3.5×105
热膨胀率 (%/℃) 4×106

氧化锌空间结构 电镜下的氧化锌半导体材料

制备方法:纯氧化锌是煅烧锌矿石或在空气中燃烧锌条而得。氧化锌结晶是六角晶系,晶格常数α=3.25×10-10m,c=5.20×10-10m。室温下满足化学计量比关系的氧化锌晶体或多晶体中导电载流子极少,具有绝缘体的性能。在空气中经高温处理后,将会因氧的过剩或不足而成为偏离化学计量比关系的不完整晶体,即含有氧缺位或氧填隙锌的非化学计量比结晶,使自由电子或空穴大大增多,氧化锌由白色绝缘体变成青黑色半导体。当在氧化锌中加入适量的其他氧化物或盐类,如Bi2O3、Sb2O3、Co2O3、MnO、Cr2O3、Al2O3或Al(NO3)2等作为添加剂,按一般的陶瓷工艺成型烧结,可以制得氧化锌半导瓷。

理论模型:六方纤锌矿结构是理想的氧化锌,对称性C6v-4、属于P63mc空间群,品格常数C=O.521 nm,Y=120 ,a=b=O.325 nm,α=β= 90。。其中c/a较理想的六角柱紧堆积结构的1.633稍小为1.602。其它方向的氧ZnO键长为O.197 nm,只有c轴方向为0.199 nm,其晶胞由锌的六角密堆积与氧的六角密堆积反向套够而成。本文所有的及孙模型都是以超晶胞为基础的模型。我们可以看出,在氧化锌中的配位体是一个三角锥,锥顶原子和中心原子的键长与锥面三个原子的键长相比要稍大,其棱长小于底面边长。所以,ZnO 四面体为晶体中02-一配位多面体,O2-与Zn 配位情况基本相同。

计算结果:利用实验晶格参数对理想的ZnO晶体的电子结构进行了计算。其中包括总体态密度,能带结构,分波态密度。图3,图4,图5为计算结果。用其他理论方法计算的结果与本文计算结果相符合。我们可以从图3,图4,图5中看出,基本上,ZnO的价带可分为两个区域,分别是-4.0~0 eV的上价带区以及一6.0~L4.0 eV的下价带。很显然,ZnO下价带区则主要是Zn3d态贡献的,而上价带区则主要是由02p态形成的。在一18 eV处由02s态贡献的价带部分,与其他两个价带由于之间的相互作用相对较弱,本文不做相关讨论。对于主要来源干Zn4s态贡献的导带部分,从Zn4s态到02p态电子具有明显的跃迁过程,氧位置处的局域态密度的引力中心受到影响向低能级方向移动,这就表明了,理想ZnO是一个共价键较弱,离子性较强的混合键金属氧化物半导体材料。

组成:这种半导瓷由半导电的氧化锌晶粒及添加剂成分构成的晶粒间层所组成,其理想结构模型如图。由于每一个氧化锌晶粒和晶粒间层之间都能形成一个接触区,具有一般半导体接触的单向导电性,所以两个晶粒间存在两个相反位置的整流结,一块氧化锌半导瓷片是大量相反放置的整流结组的堆积。

图6:氧化锌半导瓷空间结构

氧化锌半导瓷的伏安特性:当外加电压于这种材料时,低电压下,由于反偏整流结的阻挡作用,材料呈高阻状态,具有绝缘性能。当电压高达一定值时,整流结发生击穿,材料电阻率迅速下降,成为导电材料,可以通过相当大密度的电流。

图7:氧化锌半导体瓷的伏安特性

作用:氧化锌半导瓷的非线性电压电流关系。利用这种对称的非线性伏安特性可以制成各种电压限幅器、能量吸收装置等,如电力系统的过电压保护装置,特别是由于这类材料低电压下的电阻率高,因而在长期工作电压下漏电流小、发热小,可以做成不带火花间隙的高压避雷器;而高电压下电阻低、残压小,能把过电压限制在更低的水平上,使电网和电工设备的绝缘水平有可能降低,特别是在超高压电网,这一点更为重要。

拓展:稀磁半导体材料(Diluted magnetic semiconctors,DMS)
稀释磁性半导体简称稀磁半导体(Diluted Magneticsemi Conctors,DMS),是利用3d族过渡金属或4f族稀土金属的磁性离子替代Ⅱ2Ⅵ族、Ⅳ2Ⅵ族、Ⅱ2Ⅴ族或Ⅲ2Ⅴ族等化合物半导体中的部分非磁性阳离子而形成的新型半导体材料,又可称为半磁半导体(Semi Magnetic Semi Conctors,SMSC)材料或半导体自旋电子材料。之所以称为稀磁半导体是由于相对于普通的磁性材料,其磁性元素的含量较少。这类材料由于阳离子替代而存在局域磁性顺磁离子,具有很强的局域自旋磁矩。局域顺磁离子与迁移载流子(电子或空穴)之间的自旋2自旋相互作用结果产生一种新的交换相互作用,使得稀磁半导体具有很多与普通半导体截然不同的特殊性质,如磁性、显著的磁光效应和磁输运性质。稀磁半导体能利用电子的电荷特性和自旋特性,即兼具半导体材料和磁性材料的双重特性。它将半导体的信息处理与磁性材料的信息存储功能、半导体材料的优点和磁性材料的非易失性两者融合在一起,这种材料研制成功将是材料领域的革命性进展。同时,稀磁半导体在磁性物理学和半导体物理学之间架起了一道桥梁。
ZnO作为一种宽带隙半导体,激子束缚能较高(60meV),具有温度稳定性好、光透过率高、化学性能稳定,原料丰富易得、价格低廉等优点,并且过渡金属离子易于掺杂,可制备性能良好的稀磁半导体,因而成为目前稀磁半导体材料的研究热点。

国内研究以及原理:近年来,由于1i掺杂的Zn()材料可能同时具有铁电性和铁磁性,国内很多研究者都对它进行了研究。南京大学的宋海岸等制备了Ni、I』i共掺的ZnO薄膜,发现由于Li掺杂引入了空穴,使铁磁性减弱 ]。北京航空航天大学的李建军等制备了I Co共掺的ZnO纳米颗粒,实验发现,当掺杂浓度少于9 时体系的铁磁性会增强,其原因是掺入后形成了填隙原子,电子浓度明显增加,使得束缚磁极子浓度增加,且磁极子之间容易发生重叠,最终导致铁磁耦合作用增强。武汉大学的C W Zou等制备了Mn、Li共掺杂的ZnO薄膜,研究了不同Mn掺杂浓度的ZnO样品。但这些研究中对Li、Mn共掺杂ZnO陶瓷的磁性研究并不常见。

应用现状与前景展望
(1)改变组分获得所需的光谱效应
通过改变磁性离子的浓度可得到所需要的带隙,从而获得相应的光谱效应。由于其响应波长可覆盖从紫外线到远红外线的宽范围波段,这种DMS是制备光电器件、光探测器和磁光器件的理想材料。在Ⅲ2Ⅴ族宽带隙稀磁半导体GaN中掺入不同的稀土磁性元素可发出从可见光到红外的不同波长的光,加上GaN本身可发紫外光,因此掺稀土GaN材料可发出从紫外到红外波段的光,如在GaN中掺Er可发绿光,而掺Pr可发红光等。
1994年Wilson等[24]在掺Er的GaN薄膜中首次观察到1.54
μm的红外光荧光。1998年Steckl等采用Er原位掺杂方法首次获得绿光发射[25],掺Er的GaN的另一个重要特性是其温度猝灭效应很弱,这对于制备室温发光器件非常重要。后来红光和蓝光器件相继研制成功,这些都可以作为光通信和光电集成的光源。
(2)sp2d交换作用的应用
利用DMS的巨法拉第旋转效应可制备非倒易光学器件,也可用于制备光调谐器、光开关和传感器件。
DMS的磁光效应为光电子技术开辟了新的途径。利用其磁性离子和截流子自旋交换作用(sp2d作用)所引起的巨g因子效应,可制备一系列具有特殊性质的稀磁半导体超晶格和量子阱器件。这种量子阱和超晶格不仅具有普通量子阱和超晶格的电学、光学性质,而且还具有稀磁半导体的磁效应,因此器件具有很多潜在的应用价值。利用磁性和半导体性实现自旋的注入与输运,可造出新型的自旋电子器件,如自旋过滤器和自旋电子基发光二极管等。
(3)深入研究自旋电子学,推动DMS的实用化
自旋电子学是目前固体物理和电子学中的一个热点,其核心内容是利用和控制固体,尤其是半导体中的自旋自由度。近年来以稀磁半导体为代表的自旋电子学的研究相当活跃,各国科研机构和各大公司都投入了巨大财力和人力从事此领域的研究。利用具有磁性或自旋相关性质的DMS基材料可制出一类新型器件———既利用电子、空穴的电荷也利用它们的自旋。这些新材料和人造纳米结构,包括异质结构(HS)、量子阱(QW)和颗粒结构一直是一些新型功能的“沃土”———与自旋相关的输运、磁阻效应和磁光效应。自旋电子学可用于计算机的硬驱动,在计算机存储器中极具潜力。在高密度非易失性存储器、磁感应器和半导体电路的集成电路、光隔离器件和半导体激光器集成电路以及量子计算机等领域,DMS材料均有重大的潜在应用。但上述以稀磁半导体为基础的自旋电子器件的研制尚处于起步阶段,距实用化还有很长的路程。自旋电子学与自旋电子学器件研究的深入,将加深DMS机理的研究和理论的探索,推动DMS的实用化过程。
(4)室温DMS的研究
为了应用方便,需要开发高居里温度(Tc)的DMS材料(高于室温)。室温下具有磁性为磁性半导体的应用提供了可能。扩展更多的掺杂磁性元素或生长更多种类材料来提高DMS材料的居里温度是当前的首要问题。近来Hori等成功掺入5%Mn在GaN中,获得了高于室温的Tc;报道表明(Zn,Co)O的居里温度可达到290~380K[26]。Dietl等[6]采用Zener模型对闪锌矿结构的磁半导体计算表明,GaMnN和ZnMnO具有高达室温的居里温度,该计算结果对实验研究提供了很好的理论依据。但是,如何将磁性和半导体属性有机地结合起来仍然是值得进一步研究的问题。

③ 什么是宽带隙半导体材料

器件的工作温度可以很高,比如说碳化硅可以工作到600摄氏度;金刚石如果做成半导版体,温度可以更高,权器件可用在石油钻探头上收集相关需要的信息。它们还在航空、航天等恶劣环境中有重要应用。广播电台、电视台,唯一的大功率发射管还是电子管,没有被半导体器件代替。这种电子管的寿命只有两三千小时,体积大,且非常耗电;如果用碳化硅的高功率发射器件,体积至少可以减少几十到上百倍,寿命也会大大增加,所以高温宽带隙半导体材料是非常重要的新型半导体材料。
现在的问题是这种材料非常难生长,硅上长硅,砷化镓上长GaAs,它可以长得很好。但是这种材料大多都没有块体材料,只得用其它材料做衬底去长。比如说氮化镓在蓝宝石衬底上生长,蓝宝石跟氮化镓的热膨胀系数和晶格常数相差很大,长出来的外延层的缺陷很多,这是最大的问题和难关。另外这种材料的加工、刻蚀也都比较困难。目前科学家正在着手解决这个问题。

④ 宽带隙半导体的p型掺杂困难的原因可能有哪些

器件的工作温度可以很高,比如说碳化硅可以工作到600摄氏度;金刚石如果做成半导体,温度可以更高,器件可用在石油钻探头上收集相关需要的信息。它们还在航空、航天等恶劣环境中有重要应用。

⑤ 宽带隙半导体,晶体结构、能带及器件的结构有哪些,光电特性是什么

一般把室温下带隙大于2.0eV的半导体材料归类于宽带隙半导体。
建议你参考这篇文章“国外军事和宇航应用宽带隙半导体技术的发展” ,网络文库也有。

⑥ 请问SIC半导体与硅半导体的主要差别是什么

    硅(Si)是研究较早的半导体材料,是第一代半导体的代表。半个多世纪以来,硅半导体技术的长足发展极大地促进了电力和电子技术的进步。尤其到了20世纪70年代,集成电路制造技术的成熟,奠定了硅在整个半导体行业中的领军地位。目前,除了极少数微波加热电源还使用真空电子管之外,几乎所有的电力和电子器件都使用Si材料来制造。尤其在集成电路中,99%以上用的都是Si半导体材料。然而随着科学的进步和半导体技术的发展,Si由于材料本身的特点在某些应用领域的局限性逐渐表现出来。例如,其带隙较窄(~1.12eV)、载流子迁移率和击穿电场较低等,限制了其在光电子领域以及高频、高功率器件方面的应用L1。

   

    第三代半导体也称为宽带隙半导体(禁带宽度超过2.0eV),如金刚石、碳化硅(SiC)、Ⅲ一V族氮化物、Ⅱ一Ⅵ族Zn基化合物及其固溶体等。其中以金刚石、SiC、氮化镓(GaN)和氧化锌(ZnO)为第三代半导体的代表材料。宽带隙使第三代半导体具有许多共同的性能特点,包括高熔点、高临界击穿电场、高热导率、小的介电常数、大的激子束缚能、大的压电系数以及较强的极化效应等。
  SiC电学性能

  SiC具有较高的临界击穿电场、高热导率和饱和电子迁移率等特点,适合于制造大功率、高温、高频和抗辐射的半导体器件。SiC热导率是si的3倍,SiC材料优良的散热性有助于提高器件的功率密度和集成度。SiC材料形态决定其禁带宽度的大小,但均大于si和GaAs的禁带宽度,降低SiC器件的泄漏电流,加上SiC的耐高温特性,使得SiC器件在高温电子工作领域优势明显。因其具有高硬度和高化学稳定性等特点,使得SiC材料能胜任恶劣的工作环境。一维SiC纳米材料具有较高的禁带宽度,可由间接带隙半导体转变为直接带隙半导体,高强高韧等特点;适用于制造在恶劣环境下使用的电子器件。

⑦ 什么是宽带隙半导体材料

宽带隙半导体,一般把室温下带隙大于2.0eV的半导体材料归类于宽带回隙半导体,宽带隙半答导体在蓝、紫光和紫外光电子器件,高频、高温、高功率电子器件及场发射器件方面应用广泛。
室温下,Si的带隙为1.1eV,GaAs的带隙为1.43eV,一般把室温下带隙大于2.0eV的半导体材料归类于宽带隙半导体,宽带隙半导体在蓝、紫光和紫外光电子器件,高频、高温、高功率电子器件及场发射器件方面应用广泛。

⑧ 宽带隙半导体技术国家重点学科实验室的介绍

宽带隙半导体技术国家重点学科实验室依托西安电子科技大学,是在宽禁带半版导体材料与器件教育部权重点实验室的基础上,2007年国家批准建设的国家级重点实验室,2008年实验室成为我国国防科技创新团队,是中国宽带隙半导体材料与器件研究的主要基地。

⑨ 请高手介绍一下碳化硅在半导体行业内的应用,以及它的优势特点和不足

从原始社会的石器时代到今日的信息时代,人类社会的发展史无疑也是一部材料的发展变革史。上世纪初发展起来的硅材料也应运成为当代信息产业发展的基石,而正是硅材料芯片造就了独占世界信息产业鳌头的美国硅谷高科技产业集群,吸引了苹果、英特尔、谷歌等世界顶级半导体产业巨头聚集此处。
目前95%以上的半导体器件和99%以上的集成电路都是由硅材料制作。经过近百年的发展,性能优势已得到充分发挥的硅材料逐渐无法满足高温、高压、抗辐射等方面要求,半导体行业急需适应现代产业需求的新型材料。而经过100多年的认知和20多年的研发后,碳化硅材料已被业界认为是继硅、砷化镓之后发展最为成熟的第三代半导体材料,其优越的半导体性能远超硅材料。
碳化硅材料可广泛应用于电力电子器件(二极管、场效应管、换能器、马达驱动器、输出整流器)、射频器件(宽带通讯、有源相控阵雷达)、光电子器件(大功率发光二极管)等领域,与大众生活息息相关,具有重要的战略地位,业界广泛认为,宽禁带半导体碳化硅材料的发展将引领世界第三次半导体产业革命。
据统计,如果使用半导体碳化硅材料LED路灯替代高压钠灯,以1000支为单位,一年可节省人民币187.98万元;我国照明用电每年在3000亿度以上,如果用半导体碳化硅LED取代全部白炽灯或部分取代荧光灯,可节省三分之一的照明用电,即1000亿千瓦时,这也就意味着节省了相当于总投资超过2000亿元人民币的三峡工程全年的发电量。这对于能源供应紧张的我国来说,具有重要的战略意义。根据新能源产业技术综合开发研究机构的估算结果,到2030年,随着半导体碳化硅材料的普及,如将内置半导体器件全部由碳化硅材料制作,与传统的硅材料器件相比,电力损耗下降幅度最高可达47%。
综上可见,解决未来新能源发展问题的一个重要途径就是更为广泛地推广使用半导体碳化硅材料,世界正在迎来由半导体碳化硅材料引领的新时代。

⑩ 高阻的本征半导体材料和高阻的高度补偿的半导体材料的区别是什么

半导体材料:氧化锌半导瓷 化学式:ZnO

基本概况:ZnO(氧化锌)是一种新型的化合物半导体材料Ⅱ一Ⅵ宽禁带(E =3.37eV)。在常温常压下其是一种非常典型的直接宽禁半导体材料,稳定相是六方纤锌矿结构,其禁带宽度所对应紫外光波长,有希望能够开发出蓝绿光、蓝光、紫外光等等多种发光器件。
氧化锌的能带隙和激子束缚能较大,透明度高,有优异的常温发光性能,在半导体领域的液晶显示器、薄膜晶体管、发光二极管等产品中均有应用。此外,微颗粒的氧化锌作为一种纳米材料也开始在相关领域发挥作用。

晶体数据:
针状体根部直径 (μm) 0.1~10
比热 (J/g·k) 5.52
耐热性能 (℃)
1720(升华)
真实密度 (g/cm3) 5.8
表观密度 (g/cm3) 0.01~0.5
粉体电阻率 (Ω·cm) 104~109
介电常数 (实部) 4.5~30
介电常数 (虚部) 20~135
拉伸强度 (MPa) 1.2×104
弹性模量 (MPa) 3.5×105
热膨胀率 (%/℃) 4×106

氧化锌空间结构 电镜下的氧化锌半导体材料

制备方法:纯氧化锌是煅烧锌矿石或在空气中燃烧锌条而得。氧化锌结晶是六角晶系,晶格常数α=3.25×10-10m,c=5.20×10-10m。室温下满足化学计量比关系的氧化锌晶体或多晶体中导电载流子极少,具有绝缘体的性能。在空气中经高温处理后,将会因氧的过剩或不足而成为偏离化学计量比关系的不完整晶体,即含有氧缺位或氧填隙锌的非化学计量比结晶,使自由电子或空穴大大增多,氧化锌由白色绝缘体变成青黑色半导体。当在氧化锌中加入适量的其他氧化物或盐类,如Bi2O3、Sb2O3、Co2O3、MnO、Cr2O3、Al2O3或Al(NO3)2等作为添加剂,按一般的陶瓷工艺成型烧结,可以制得氧化锌半导瓷。

理论模型:六方纤锌矿结构是理想的氧化锌,对称性C6v-4、属于P63mc空间群,品格常数C=O.521 nm,Y=120 ,a=b=O.325 nm,α=β= 90。。其中c/a较理想的六角柱紧堆积结构的1.633稍小为1.602。其它方向的氧ZnO键长为O.197 nm,只有c轴方向为0.199 nm,其晶胞由锌的六角密堆积与氧的六角密堆积反向套够而成。本文所有的及孙模型都是以超晶胞为基础的模型。我们可以看出,在氧化锌中的配位体是一个三角锥,锥顶原子和中心原子的键长与锥面三个原子的键长相比要稍大,其棱长小于底面边长。所以,ZnO 四面体为晶体中02-一配位多面体,O2-与Zn 配位情况基本相同。

计算结果:利用实验晶格参数对理想的ZnO晶体的电子结构进行了计算。其中包括总体态密度,能带结构,分波态密度。图3,图4,图5为计算结果。用其他理论方法计算的结果与本文计算结果相符合。我们可以从图3,图4,图5中看出,基本上,ZnO的价带可分为两个区域,分别是-4.0~0 eV的上价带区以及一6.0~L4.0 eV的下价带。很显然,ZnO下价带区则主要是Zn3d态贡献的,而上价带区则主要是由02p态形成的。在一18 eV处由02s态贡献的价带部分,与其他两个价带由于之间的相互作用相对较弱,本文不做相关讨论。对于主要来源干Zn4s态贡献的导带部分,从Zn4s态到02p态电子具有明显的跃迁过程,氧位置处的局域态密度的引力中心受到影响向低能级方向移动,这就表明了,理想ZnO是一个共价键较弱,离子性较强的混合键金属氧化物半导体材料。

组成:这种半导瓷由半导电的氧化锌晶粒及添加剂成分构成的晶粒间层所组成,其理想结构模型如图。由于每一个氧化锌晶粒和晶粒间层之间都能形成一个接触区,具有一般半导体接触的单向导电性,所以两个晶粒间存在两个相反位置的整流结,一块氧化锌半导瓷片是大量相反放置的整流结组的堆积。

图6:氧化锌半导瓷空间结构

氧化锌半导瓷的伏安特性:当外加电压于这种材料时,低电压下,由于反偏整流结的阻挡作用,材料呈高阻状态,具有绝缘性能。当电压高达一定值时,整流结发生击穿,材料电阻率迅速下降,成为导电材料,可以通过相当大密度的电流。

图7:氧化锌半导体瓷的伏安特性

作用:氧化锌半导瓷的非线性电压电流关系。利用这种对称的非线性伏安特性可以制成各种电压限幅器、能量吸收装置等,如电力系统的过电压保护装置,特别是由于这类材料低电压下的电阻率高,因而在长期工作电压下漏电流小、发热小,可以做成不带火花间隙的高压避雷器;而高电压下电阻低、残压小,能把过电压限制在更低的水平上,使电网和电工设备的绝缘水平有可能降低,特别是在超高压电网,这一点更为重要。

拓展:稀磁半导体材料(Diluted magnetic semiconctors,DMS)
稀释磁性半导体简称稀磁半导体(Diluted Magneticsemi Conctors,DMS),是利用3d族过渡金属或4f族稀土金属的磁性离子替代Ⅱ2Ⅵ族、Ⅳ2Ⅵ族、Ⅱ2Ⅴ族或Ⅲ2Ⅴ族等化合物半导体中的部分非磁性阳离子而形成的新型半导体材料,又可称为半磁半导体(Semi Magnetic Semi Conctors,SMSC)材料或半导体自旋电子材料。之所以称为稀磁半导体是由于相对于普通的磁性材料,其磁性元素的含量较少。这类材料由于阳离子替代而存在局域磁性顺磁离子,具有很强的局域自旋磁矩。局域顺磁离子与迁移载流子(电子或空穴)之间的自旋2自旋相互作用结果产生一种新的交换相互作用,使得稀磁半导体具有很多与普通半导体截然不同的特殊性质,如磁性、显著的磁光效应和磁输运性质。稀磁半导体能利用电子的电荷特性和自旋特性,即兼具半导体材料和磁性材料的双重特性。它将半导体的信息处理与磁性材料的信息存储功能、半导体材料的优点和磁性材料的非易失性两者融合在一起,这种材料研制成功将是材料领域的革命性进展。同时,稀磁半导体在磁性物理学和半导体物理学之间架起了一道桥梁。
ZnO作为一种宽带隙半导体,激子束缚能较高(60meV),具有温度稳定性好、光透过率高、化学性能稳定,原料丰富易得、价格低廉等优点,并且过渡金属离子易于掺杂,可制备性能良好的稀磁半导体,因而成为目前稀磁半导体材料的研究热点。

国内研究以及原理:近年来,由于1i掺杂的Zn()材料可能同时具有铁电性和铁磁性,国内很多研究者都对它进行了研究。南京大学的宋海岸等制备了Ni、I』i共掺的ZnO薄膜,发现由于Li掺杂引入了空穴,使铁磁性减弱 ]。北京航空航天大学的李建军等制备了I Co共掺的ZnO纳米颗粒,实验发现,当掺杂浓度少于9 时体系的铁磁性会增强,其原因是掺入后形成了填隙原子,电子浓度明显增加,使得束缚磁极子浓度增加,且磁极子之间容易发生重叠,最终导致铁磁耦合作用增强。武汉大学的C W Zou等制备了Mn、Li共掺杂的ZnO薄膜,研究了不同Mn掺杂浓度的ZnO样品。但这些研究中对Li、Mn共掺杂ZnO陶瓷的磁性研究并不常见。

应用现状与前景展望
(1)改变组分获得所需的光谱效应
通过改变磁性离子的浓度可得到所需要的带隙,从而获得相应的光谱效应。由于其响应波长可覆盖从紫外线到远红外线的宽范围波段,这种DMS是制备光电器件、光探测器和磁光器件的理想材料。在Ⅲ2Ⅴ族宽带隙稀磁半导体GaN中掺入不同的稀土磁性元素可发出从可见光到红外的不同波长的光,加上GaN本身可发紫外光,因此掺稀土GaN材料可发出从紫外到红外波段的光,如在GaN中掺Er可发绿光,而掺Pr可发红光等。
1994年Wilson等[24]在掺Er的GaN薄膜中首次观察到1.54
μm的红外光荧光。1998年Steckl等采用Er原位掺杂方法首次获得绿光发射[25],掺Er的GaN的另一个重要特性是其温度猝灭效应很弱,这对于制备室温发光器件非常重要。后来红光和蓝光器件相继研制成功,这些都可以作为光通信和光电集成的光源。
(2)sp2d交换作用的应用
利用DMS的巨法拉第旋转效应可制备非倒易光学器件,也可用于制备光调谐器、光开关和传感器件。
DMS的磁光效应为光电子技术开辟了新的途径。利用其磁性离子和截流子自旋交换作用(sp2d作用)所引起的巨g因子效应,可制备一系列具有特殊性质的稀磁半导体超晶格和量子阱器件。这种量子阱和超晶格不仅具有普通量子阱和超晶格的电学、光学性质,而且还具有稀磁半导体的磁效应,因此器件具有很多潜在的应用价值。利用磁性和半导体性实现自旋的注入与输运,可造出新型的自旋电子器件,如自旋过滤器和自旋电子基发光二极管等。
(3)深入研究自旋电子学,推动DMS的实用化
自旋电子学是目前固体物理和电子学中的一个热点,其核心内容是利用和控制固体,尤其是半导体中的自旋自由度。近年来以稀磁半导体为代表的自旋电子学的研究相当活跃,各国科研机构和各大公司都投入了巨大财力和人力从事此领域的研究。利用具有磁性或自旋相关性质的DMS基材料可制出一类新型器件———既利用电子、空穴的电荷也利用它们的自旋。这些新材料和人造纳米结构,包括异质结构(HS)、量子阱(QW)和颗粒结构一直是一些新型功能的“沃土”———与自旋相关的输运、磁阻效应和磁光效应。自旋电子学可用于计算机的硬驱动,在计算机存储器中极具潜力。在高密度非易失性存储器、磁感应器和半导体电路的集成电路、光隔离器件和半导体激光器集成电路以及量子计算机等领域,DMS材料均有重大的潜在应用。但上述以稀磁半导体为基础的自旋电子器件的研制尚处于起步阶段,距实用化还有很长的路程。自旋电子学与自旋电子学器件研究的深入,将加深DMS机理的研究和理论的探索,推动DMS的实用化过程。
(4)室温DMS的研究
为了应用方便,需要开发高居里温度(Tc)的DMS材料(高于室温)。室温下具有磁性为磁性半导体的应用提供了可能。扩展更多的掺杂磁性元素或生长更多种类材料来提高DMS材料的居里温度是当前的首要问题。近来Hori等成功掺入5%Mn在GaN中,获得了高于室温的Tc;报道表明(Zn,Co)O的居里温度可达到290~380K[26]。Dietl等[6]采用Zener模型对闪锌矿结构的磁半导体计算表明,GaMnN和ZnMnO具有高达室温的居里温度,该计算结果对实验研究提供了很好的理论依据。但是,如何将磁性和半导体属性有机地结合起来仍然是值得进一步研究的问题。

热点内容
三个字的电影名 发布:2024-08-19 09:10:03 浏览:417
台湾红羊经典电影 发布:2024-08-19 09:02:17 浏览:767
搞笑电影范冰冰梁家辉开战 发布:2024-08-19 08:53:18 浏览:917
免费午夜激情 发布:2024-08-19 08:42:15 浏览:831
40分钟左右的英语电影 发布:2024-08-19 08:28:43 浏览:695
电影宋基美娜 发布:2024-08-19 08:27:04 浏览:942
宿舍都变成女的的电影 发布:2024-08-19 07:59:35 浏览:897
台湾恐怖片丧尸 发布:2024-08-19 07:57:21 浏览:179
免费观看qq群 发布:2024-08-19 07:53:00 浏览:921
4级片名字 发布:2024-08-19 07:39:14 浏览:553