当前位置:首页 » 半导体业 » 熔炼半导体温度要达到多少

熔炼半导体温度要达到多少

发布时间: 2021-01-10 06:29:56

A. 温度对半导体导电特性的影响,我要具体详尽的说明,谢谢!!!注释:强调的是温度

拿其电阻率来说,电阻率主要决定于载流子的浓度和迁移率,两者均与杂质浓度和温度有关系。
讨论纯半导体材料是,电阻率主要取决于本证载流子浓度ni,ni随温度升高会急剧增加,室温左右时,每8℃,硅的ni会增加大约一倍,而迁移率只是稍有下降,所以可以认为起电阻率相应的降低了一半左右。对于锗,每增加12℃,ni增加一倍,电阻率下降一半。本征半导体的电阻率随温度增加单调下降。
对于杂质半导体:
温度很低时,本征激发忽略,主要由杂质电离提供载流子,它随温度升高而增加;散射主要由电离杂质决定,迁移率随温度升高增大,所以电阻率下降。
温度继续升高,杂质全部电离,本征激发还不显著时,载流子基本不变,晶格振动是主要影响因素,迁移率随温度升高而降低,所以电阻率随温度升高而增大。
继续升高到本征激发很快增加时,本征激发称为主要影响因素,表现出同本证半导体相同的特征。

B. 半导体的导电能力随温度升高而

热敏性。热敏性拼音: [rè mǐn xìng] 基本解释: 当外界温度升高时,半导体导电能力增加,当外界温度降低时,半导体导电能力降低。半导体的这种特性叫热敏性。半导体是导电能力介于导体和绝缘体之间的物质.它的重要特性表现在以下几个方面:热敏性半导体材料的电阻率与温度有密切的关系。温度升高,半导体的电阻率会明显变小。例如纯锗(Ge),温度每升高10度,其电阻率就会减少到原来的一半。光电特性很多半导体材料对光十分敏感。无光照时,不易导电;受到光照时,就变的容易导电了。例如,常用的硫化镉半导体光敏电阻,在无光照时电阻高达几十兆欧,受到光照时电阻会减小到几十千欧。半导体受光照后电阻明显变小的现象称为“光导电”。利用光导电特性制作的光电器件还有光电二极管和光电三极管等。近年来广泛使用着一种半导体发光器件--发光二极管,它通过电流时能够发光,把电能直接转成光能。目前已制作出发黄,绿,红,蓝几色的发光二极管,以及发出不可见光红外线的发光二极管。另一种常见的光电转换器件是硅光电池,它可以把光能直接转换成电能,是一种方便的而清洁的能源。 搀杂特性纯净的半导体材料电阻率很高,但掺入极微量的“杂质”元素后,其导电能力会发生极为显著的变化。例如,纯硅的电阻率为214×1000欧姆/厘米,若掺入百万分之一的硼元素,电阻率就会减小到0.4欧姆/厘米。因此,人们可以给半导体掺入微量的某种特定的杂质元素,精确控制它的导电能力,用以制作各种各样的半导体器件。

C. 要使半导体工作温度超过1000摄氏度,使用什么方法可以让半导体和金属连接在一起

不同的半导体所承受的最高温度是不同的,如锗为85℃~100℃,而硅为150℃~200℃。虽然不同半导版体都有不权同的最高工作温度,但却不能让它们在高温条件下工作,这是因为半导体器件的性能会随温度的升高而下降。图30-3给出了一个大功率半导体三极管的最大耗散功率与外壳温度的关系曲线。当温度低于25℃时,最大耗散功率可达90W;当高于此温度后,最大耗散功率呈线性下降。因此,必须给大功率半导体三极管增加散热装置,改善散热条件,使其能正常工作。

D. 半导体制冷器能够调节的温度范围是多少

同意一楼的观点,问题太过笼统!
首先温度调节看制冷器温差专:常规的半导体制冷片温属差60~70;大温差的可以做到150
第二温度调节要看你要调节空间的热载荷是多大,环境温度是多少
第三温度调节范围看你要调节空间的漏热有多大,也就是你的保温性能如何?
第四你使用的半导体制冷器的效率及性能匹配是否合理
这样条件清楚了,你才能计算出你的调节范围
www.sovano.com希望对你有帮助

E. 为什么半导体的温度不能过高

不能简单地说,半导体的电阻率是温度的单调递减函数.
在温度较低时,杂质专没有完全电离,这时随温属度升高,杂质电离增加直到完全电离,这段以载流子增加为主,所以电阻率降低;
随后温度升高,虽然本征激发开始,但载流子迁移率的下降对电阻率的升高影响更大,所以这段会使电阻率升高;
最后,温度的升高使本征激发带来的载流子浓度大大提高,超过了迁移率的下降对电阻率的升高影响,所以这段又会使电阻率降低.

F. 半导体单晶热处理的温度要求和目的

①热处理温度要求:650±5℃;
②热处理目的:还原直拉单晶硅片真实电阻率;

1、热处理后电阻率会有什么变化
由于氧是在大约1400℃引入硅单晶的,所以在一般器件制造过程的温度范围(≤1200℃),以间隙态存在的氧是处于过饱和状态的,这些氧杂质在器件工艺的热循环过程中由于固溶度的降低会产生氧沉淀。一般而言,氧浓度越高,氧沉淀越易成核生长,形成的氧沉淀也就越多。反之,氧沉淀就越少。尤其是当氧浓度小于一定值时(<5×1017个/厘米3),几乎就观察不到氧沉淀的形成。
2、热处理的几个温度区间概念:
热施主:350-550℃,代表温度450℃.
450℃热处理后(或同等效果,如单晶在炉子里的冷却),可观察到N型样品的电阻率下降而P型样品的电阻率增高,有如引入一定数量的施主现象一样。这是由于在此温度下,溶解的氧原子迅速形成络合物(SiO4)所引起的热生施主,其电阻率与硅中氧含量的四次方成反比。
新施主:550-800℃,代表温度650℃.
650℃热处理,在迅速冷却的条件下(即迅速跨过450℃),可消除热生施主。即我们可观察到N型样品电阻率恢复高;P型样品电阻率恢复低。
沉淀:800-1200℃,代表温度1050℃
1050℃热处理,会带来氧沉淀,且因沉淀诱生层错等缺陷。
还原:>1200℃
>1200℃热处理,氧恢复到间隙态。

G. 半导体随温度变化吗

以硅为例,在一定的温度范围内,半导体的电阻率随温度的升高,而变小.因为半导体价带上的电专子,随着属温度的升高,不断地被激发到导带,使载流子的数量增加,其导电性得到不断加强,电阻率变小;
当温度上升到一定高度,价带电子的激发到了极限,同时晶格的热振动加剧,对载流子的散射作用也增强.这时,随着温度的进一步升高,半导体的电阻率则反而会增大.

H. 半导体为什么会容易受到温度影响会产生什么样的后果

因为半导体抄是靠电子和空穴的移动导电。未掺杂的半导体叫本征半导体,一般说来导电性远不如掺过杂的半导体,所以一般使用的都是掺杂半导体。掺入的杂质电离出的电子和空穴增强了半导体导电性,其电离率和温度密切相关,所以温度会影响半导体材料的电阻率。

对于掺杂半导体:温度很低时,本征激发忽略,主要由杂质电离提供载流子,它随温度升高而增加;散射主要由电离杂质决定,迁移率随温度升高增大,所以电阻率下降。
温度继续升高,杂质全部电离,本征激发还不显著时,载流子基本不变,晶格振动是主要影响因素,迁移率随温度升高而降低,所以电阻率随温度升高而增大。
温度继续升高到本征激发快速增加时,本征激发称为主要影响因素,表现出同本证半导体相同的特征。

I. 半导体制冷最低温度可达多少

最大温差应为120度,理论可以计算得到。楼上的说的只是计算机里的版。所以你说的-30℃可权以达到。
如果想弄得很明白建议参考〈温差电转换及其应用〉一书。
另外国内的研究比较少,如果可能建议参考美国或日本的资料,尤其是日本做得很好。

热点内容
三个字的电影名 发布:2024-08-19 09:10:03 浏览:417
台湾红羊经典电影 发布:2024-08-19 09:02:17 浏览:767
搞笑电影范冰冰梁家辉开战 发布:2024-08-19 08:53:18 浏览:917
免费午夜激情 发布:2024-08-19 08:42:15 浏览:831
40分钟左右的英语电影 发布:2024-08-19 08:28:43 浏览:695
电影宋基美娜 发布:2024-08-19 08:27:04 浏览:942
宿舍都变成女的的电影 发布:2024-08-19 07:59:35 浏览:897
台湾恐怖片丧尸 发布:2024-08-19 07:57:21 浏览:179
免费观看qq群 发布:2024-08-19 07:53:00 浏览:921
4级片名字 发布:2024-08-19 07:39:14 浏览:553