为什么要区分半导体是否是简并的
❶ 简并半导体的半导体简并化的条件
对于半导体,其中的载流子在以下三种情况下容易出现简并:
① 载流子浓度很高
半导体中的载流子浓度越大,则当电子只占据导带底附近的一些能级、空穴只占据价带顶附近的一些能级时,就需要考虑泡里不相容原理的限制,即必须认为这些载流子应该遵从量子的统计分布--F-D分布。一是掺杂浓度较低,半导体中的载流子浓度不大,则电子只占据导带底附近的一些能级,空穴只占据价带顶附近的一些能级,不需要考虑泡里不相容原理的限制,即可认为这些载流子遵从经典的统计分布,例如n型半导体,当掺杂浓度很高时,导带中的载流子--电子的浓度很大,不可能所有的电子都分布在最低的若干个能级上,这时就需要考虑泡里不相容原理的限制--一条能级上只能有自旋相反的两个电子。这时的电子就称为是简并载流子,相应的半导体就称为简并半导体。否则,当掺杂浓度很低时,电子数量不多,则不需要考虑泡里不相容原理的限制,则为非简并状态。
② 温度较低
温度较低则载流子的能量相应的较大,载流子所能够占据的能级数目较多,这时即使半导体中有较多的载流子,但是这些载流子可以在许多能级中分布,所以也不需要考虑Pauli不相容原理的限制,因此也可以看成为经典的载流子。这就是说,低掺杂的半导体和较高温度下的半导体,都可以认为是非简并半导体。
③有效质量m*较小。
载流子的有效质量m*较大,这种载流子的de Broglie波的波长l=h/(2m*E)1/2较短,波动性不明显,则可看成为经典的载流子,它们遵从经典的统计分布。 总之,在三个以上条件下,载流子即容易出现量子特性,这时的载流子就是简并载流子。 以简并载流子导电为主的半导体就是简并半导体,否则,若是以非简并载流子导电为主的半导体就是非简并半导体。前两种情况是可以人为控制的。所以,低掺杂的半导体或者高温下的半导体都将是非简并半导体。
简并化条件是人们的一个约定,设费米能级为Ef,Ec和Ev分别为导带底和价带顶的位置,则把 N型半导体的Ec与 Ef的相对位置(或P型半导体的Ev与Ef的相对位置)作为区分简并化与非简并化的标准,一般约定:
Ec-Ef<=0 简并
0< Ec-Ef<=2.3KT 弱简并
Ec-Ef>2.3KT 非简并
❷ 本征半导体是否会发生简并
不会。
简并发生在重掺杂半导体内。本征的是不会的。
❸ 什么是非简并半导体
其中载来流子遵从经典的Boltzmann统计分布的半源导体就是非简并半导体。这在两种情况下容易出现:
一是掺杂浓度较低,半导体中的载流子浓度不大,则电子只占据导带底附近的一些能级,空穴只占据价带顶附近的一些能级,不需要考虑泡里不相容原理的限制,即可认为这些载流子遵从经典的统计分布;
二是温度较高,则载流子的能量相应的较大,载流子所能够占据的能级数目较多,这时即使半导体中有较多的载流子,但是这些载流子可以在许多能级中分布,所以也不需要考虑泡里不相容原理的限制,因此也可以看成为经典的载流子。
这就是说,低掺杂的半导体和较高温度下的半导体,都可以认为是非简并半导体。
❹ 非简并性系统和简并性系统的区别
如果学过量子力学、热力学与统计物理的话,简并与非简并就很好理解了
简并有两种:①能级的简并、②状态的简并,半导体中的简并具有这两方面的意义(但是一般半导体基础的书上只将第二个作为定义),简单来说:
能级的简并就是微粒运动状态不同,但是能量(能级)一样;非简并就是每个不同运动状态的微粒具有不同的能量。
量子力学中,解薛定谔方程能够得到一些相应的量子数,这些量子数能描述微粒的运动状态,比如:氢原子中的电子有:主量子数n、角量子数l、磁量子数m、自旋量子数s、自旋磁量子数ms(s是下标),拥有不同量子数的电子说明运动状态不同。在没有外加磁场的情况下,电子的能量只和n有关,而和其他4个量子数无关,但是同一个n下有n²种运动状态(量子力学或者原子物理中的相关结论),我们就说能级En是n²度简并的,表示同一个能级En下电子最多可以有n²种运动状态。
对于线性谐振子来说,n与能级是一一对应的,所以线性谐振子是非简并系统。
需要指出的是,有些简并能级在特殊情况下会变为非简并的,比如电子在磁场中由于磁量子数的变化,能级会分裂(塞曼效应)。
状态的简并就是同一运动状态可以容纳很多微粒的系统,非简并就是每一个状态与微粒都一一对应的系统。
在统计物理中,根据微观系统的状态数,可分为三种系统:玻尔兹曼系统、费米系统、波色系统。前两个就是对应于简并与非简并的系统;波色系统更加特别,主要是自旋量子数为零的粒子(比如光子)构成的系统。去年(2013年)诺贝尔物理学奖研究的“上帝粒子”就是一种波色子。
对于半导体,简并与非简并的特性主要表现在导带底Ec与费米能级Ef大小关系上,人们一般约定:
Ec-Ef<=0 简并,这需要掺杂浓度很高很高,或者温度很低,一般的金属都是简并材料;
0< Ec-Ef<=2KT 弱简并,有时弱简并态也归为非简并态;
Ec-Ef>2KT 非简并,这时费米能级一般在禁带中间左右。
本征半导体的费米能级就是在禁带中间,即Ef=1/2(Ec-Ev)
以上纯属自己观点,本人也正在学半导体物理基础,只不过学过理论物理四大力学,另外,参考http://wenku..com/link?url=SxqQD_H-big93aq6Pyeo_TSOS2j91WDOgeyVKCijbwmR-
我将其中的2、3、点归为状态的简并。
❺ 简并半导体性质和非简并半导体性质的区别是什么
半导体发生简并对应一个温度范围:用图解的方法可以求出半导体发生简并时,对应一内个温度范容围。这个温度范围的大小与发生简并时的杂质浓度及杂质电离能有关:电离能一定时,杂质浓度越大,发生简并的温度范围越大;发生简并的杂质浓度一定时,杂质电离能越小,简并温度范围越大。简并半导体的载流子浓度:对于n型半导体,施主浓度很高,使费米能级接近或进入导带时,导带底附近底量子态基本上已被电子占据,导带中底电子数目很多的条件不能成立,必须考虑泡利不相容原理的作用。这时,不能再用玻耳兹曼分布函数,必须用费米分布函数来分析导带中电子的分布问题。这种情况称为载流子的简并化。发生载流子简并化的半导体称为基本半导体,对于p型半导体,其费米能级接近价带顶或进入价带,也必须用费米分布函数来分析价带中空穴的分布问题。简并时的杂质浓度:对n型半导体,半导体发生简并时,掺杂浓度接近或大于导带底有效状态密度;对于杂质电离能小的杂质,则杂质浓度较小时就会发生简并。对于p型半导体,发生简并的受主浓度接近或大于价带顶有效状态密度,如果受主电离能较小,受主浓度较小时就会发生简并。
❻ 怎么判断简并半导体什么是简并半导体
一般情况下,ND<NC或NA <NV;费米能级处于禁带之中。当ND≥或NA≥NV时,EF将与EC或EV重合,或进入导带或价带,此时的半导体称为简并半导体。也即,简并半导体是指:费米能级位于导带之中或与导带重合;费米能级位于价带之中或与价带重合。
选取EF = EC为简并化条件,得到简并时最小施主杂质浓度:
(6)为什么要区分半导体是否是简并的扩展阅读
半导体芯片的制造过程可以分为沙子原料(石英)、硅锭、晶圆、光刻,蚀刻、离子注入、金属沉积、金属层、互连、晶圆测试与切割、核心封装、等级测试、包装等诸多步骤,而且每一步里边又包含更多细致的过程。
1、沙子:硅是地壳内第二丰富的元素,而脱氧后的沙子(尤其是石英)最多包含25%的硅元素,以二氧化硅(SiO2)的形式存在,这也是半导体制造产业的基础。
2、硅熔炼:12英寸/300毫米晶圆级,下同。通过多步净化得到可用于半导体制造质量的硅,学名电子级硅(EGS),平均每一百万个硅原子中最多只有一个杂质原子。此图展示了是如何通过硅净化熔炼得到大晶体的,最后得到的就是硅锭。
3、单晶硅锭:整体基本呈圆柱形,重约100千克,硅纯度99.9999%。
4、硅锭切割:横向切割成圆形的单个硅片,也就是我们常说的晶圆(Wafer)。
5、晶圆:切割出的晶圆经过抛光后变得几乎完美无瑕,表面甚至可以当镜子。
6、光刻胶(Photo Resist):图中蓝色部分就是在晶圆旋转过程中浇上去的光刻胶液体,类似制作传统胶片的那种。晶圆旋转可以让光刻胶铺的非常薄、非常平。
7、光刻:光刻胶层随后透过掩模(Mask)被曝光在紫外线(UV)之下,变得可溶,期间发生的化学反应类似按下机械相机快门那一刻胶片的变化。掩模上印着预先设计好的电路图案,紫外线透过它照在光刻胶层上,就会形成微处理器的每一层电路图案。
8、溶解光刻胶:光刻过程中曝光在紫外线下的光刻胶被溶解掉,清除后留下的图案和掩模上的一致。
9、蚀刻:使用化学物质溶解掉暴露出来的晶圆部分,而剩下的光刻胶保护着不应该蚀刻的部分。
10、清除光刻胶:蚀刻完成后,光刻胶的使命宣告完成,全部清除后就可以看到设计好的电路图案。
再次光刻胶:再次浇上光刻胶(蓝色部分),然后光刻,并洗掉曝光的部分,剩下的光刻胶还是用来保护不会离子注入的那部分材料。
11、离子注入(Ion Implantation):在真空系统中,用经过加速的、要掺杂的原子的离子照射(注入)固体材料,从而在被注入的区域形成特殊的注入层,并改变这些区域的硅的导电性。经过电场加速后,注入的离子流的速度可以超过30万千米每小时。
12、清除光刻胶:离子注入完成后,光刻胶也被清除,而注入区域(绿色部分)也已掺杂,注入了不同的原子。注意这时候的绿色和之前已经有所不同。
13、晶体管就绪:至此,晶体管已经基本完成。在绝缘材(品红色)上蚀刻出三个孔洞,并填充铜,以便和其它晶体管互连。
14、电镀:在晶圆上电镀一层硫酸铜,将铜离子沉淀到晶体管上。铜离子会从正极(阳极)走向负极(阴极)。
15、铜层:电镀完成后,铜离子沉积在晶圆表面,形成一个薄薄的铜层。
16、抛光:将多余的铜抛光掉,也就是磨光晶圆表面。
17、金属层:晶体管级别,六个晶体管的组合,大约500纳米。在不同晶体管之间形成复合互连金属层,具体布局取决于相应处理器所需要的不同功能性。芯片表面看起来异常平滑,但事实上可能包含20多层复杂的电路,放大之后可以看到极其复杂的电路网络,形如未来派的多层高速公路系统。
18、晶圆测试:内核级别,大约10毫米/0.5英寸。图中是晶圆的局部,正在接受第一次功能性测试,使用参考电路图案和每一块芯片进行对比。
19、晶圆切片(Slicing):晶圆级别,300毫米/12英寸。将晶圆切割成块,每一块就是芯片的内核(Die)。
20、丢弃瑕疵内核:晶圆级别。测试过程中发现的有瑕疵的内核被抛弃,留下完好的准备进入下一步
21、封装
参考资料来源:网络-半导体
参考资料来源:网络-简并半导体
❼ 简并半导体的简并化半导体
一般情况下,ND<NC或NA <NV;费米能级处于禁带之中。当ND≥NC或NA≥NV时,EF将与EC或EV重合,或进入导带或内价带,此时的半导容体称为简并半导体。也即,简并半导体是指:费米能级位于导带之中或与导带重合;费米能级位于价带之中或与价带重合。
选取EF = EC为简并化条件,得到简并时最小施主杂质浓度:
选取EF = Ev为简并化条件,得到简并时最小受主杂质浓度:
半导体发生简并时:
(1)ND ≥ NC;NA ≥ NV;
(2)ΔED越小,简并所需杂质浓度越小。
(3)简并时施主或受主没有充分电离。
(4)发生杂质带导电,杂质电离能减小,禁带宽度变窄。
❽ 简并半导体的简并
简并(或者退化)系统也就是表现出显著量子效应的量子系统,出现量子效应时的温度称为简并温度(退化温度)。相反,不呈现量子效应的系统就是非简并系统。 电子简并态概念的具体含义为:
①具有相同能量的多个态,即为简并状态(简并态)。例如Si半导体的价带顶附近处,轻空穴带和重空穴带重叠--简并,则有的轻空穴态与重空穴态具有相同的能量,它们就是简并态。
②电子状态的简并,从本质上来说,也就意味着是量子效应起作用的情况,同时,这也就意味着是需要考虑泡里不相容原理限制的情况。
③从电子按能量的分布来说,简并载流子遵从F-D分布函数而非简并载流子遵从B-E分布函数。这是量子效应的直接结果。因此对于非简并载流子可以简单地采用经典统计分布函数来讨论,但是对于简并载流子则必须采用复杂的量子统计分布函数来讨论。其中载流子遵从经典的Boltzmann统计分布的半导体就是非简并半导体。
对于导电的载流子--自由的电子和空穴,简并状态的概念也同样适用。具有简并状态的载流子就是简并载流子,相应的材料即为简并材料。 所有金属中载流子的状态就具有以上三个方面的含义,因此其中的载流子都是简并载流子,从而金属也就必然是简并材料。与简并态相反意义的状态,就是所谓非简并状态,相应的载流子和材料就是非简并载流子和非简并材料。
❾ 物理中“简并”是什么含义或者还有数学解释。
简并就是一个能级对应于一个能量本征值;
非简并就是一个能级对应于多个能量本征值;
参见<量子力学教程 曾谨言著>P78
在量子力学中,状态和能级这两个术语有着不同的含义。状态是用波函数表示的,每个不同的波函数就是一个不同的状态。能级是用给定的能量数值表示的,每个不同的能量值就是一个不同的能级。若一个能级与一种以上的状态相对应,则称之为简并能级,属于同一能级的不同状态的数目称为该能级的简并度。在氢原子中,每个能级之下有n2个独立的状态,即简并度为n2。例如:n=2时,有ψ2s、ψ2px、ψ2py和ψ2pz共4个独立状态,简并度为4。
分子生物学中,同一种氨基酸具有两个或更多个密码子的现象称为密码子的简并性(degeneracy)。对应于同一种氨基酸的不同密码子称为同义密码子(synonymous codon),只有色氨酸与甲硫氨酸仅有1个密码子。
密码子简并性具有重要的生物学意义,它可以减少有害突变。若每种氨基酸只有一个密码子,61个密码子中只有20个是有意义的,各对应于一种氨基酸。剩下41个密码子都无氨基酸所对应,将导致肽链合成终止。由基因突变而引起肽链合成终止的概率也会大大增加。简并性使得那些即使密码子中碱基被改变,仍然能编码原来氨基酸的可能性大为提高。密码的简并也使DNA分子上碱基组成有较大余地的变动,例如细菌DNA中G+C含量变动很大,但不同G+C含量的细菌却可以编码出相同的多肽链。所以遗传密码的简并性在物种的稳定上起着重要的作用。
简并度
具有相同能量的粒子可以处在不同的量子态(即不同的波函数),即每一个能级上可能有若干个不同的量子状态存在,反映在光谱上就是代某一能级的谱线常常是由好几条非常接近的精细谱线所组成。
量子力学中把能级可能有的微观状态称为该能级的简并度,用符号g表示。简并度亦被称为退化度或统计权重。
❿ 用简并半导体构成的pn结和一般pn结,它们的特性有哪些明显区别
PN结采用不同的掺杂工艺,将P型半导体与N型半导体制作在同一块硅片上,在它们的交界面内就形成空间电荷区称PN结。PN结具有单容向导电性。 PN结(PN junction) 一块单晶半导体中 ,一部分掺有受主杂质是P型半导体,另一部分掺有施主杂质是N型半导体时。