半导体为什么可以做电容器
『壹』 陶瓷为什么可以做电容器
电容器好比一个水杯,陶瓷电容器所储存的电荷就相当于水杯中的水。对于专口渴的人来说,属一杯水端来一饮而尽。但如果只是用来湿润,那就用不了多少水,一杯可以喝半小时以上。
电容器也是一样的道理,如果负载很轻,比如RTC(实时时钟),那么陶瓷电容的储能也能为负载供电相当长的一段时间。电容有很多的用途,用于持续供能只是其中一种。当电容器用于供能时,一般是以下三种情况:
1.负载很轻,电流级别,相比之下电容量较大,此时电容器可以当作电池,做短时间的备用电源,相当于小水杯,小口慢慢喝。
2.负载不算轻,电流mA,相比之下电容量不算大,电容器为负载供电时间很短,但可以通过频繁切换电容充放电来持续供能,相当于水杯不大,但旁边就有水源随时喝没了随时添水。
3.负载重,电流mA、A甚至kA,但电容量极大,电容器还是可以做电源使用。相当于好几个口渴的人喝水,而那水杯容量堪比水桶、水缸。
『贰』 半导体三极管为什么可以作为放大器件是用,放大的原理是什么
半导体三极管工作原理:
晶体三极管按材料分有两种:锗管和硅管。
而每一种又有NPN和PNP两种结构形式,但使用最多的是硅NPN和锗PNP两种三极管,(其中,N表示在高纯度硅中加入磷,是指取代一些硅原子,在电压刺激下产生自由电子导电,而p是加入硼取代硅,产生大量空穴利于导电)。
两者除了电源极性不同外,其工作原理都是相同的.
NPN硅管的电流放大原理如下:
对于NPN管,它是由2块N型半导体中间夹着一块P型半导体所组成,发射区与基区之间形成的PN结称为发射结,而集电区与基区形成的PN结称为集电结,三条引线分别称为发射极e、基极b和集电极c。 当b点电位高于e点电位零点几伏时,发射结处于正偏状态,而C点电位高于b点电位几伏时,集电结处于反偏状态,集电极电源Ec要高于基极电源Ebo。 在制造三极管时,有意识地使发射区的多数载流子浓度大于基区的,同时基区做得很薄,而且,要严格控制杂质含量,这样,一旦接通电源后,由于发射结正偏,发射区的多数载流子(电子)及基区的多数载流子(空穴)很容易地越过发射结互相向对方扩散,但因前者的浓度基大于后者,所以通过发射结的电流基本上是电子流,这股电子流称为发射极电流了。 由于基区很薄,加上集电结的反偏,注入基区的电子大部分越过集电结进入集电区而形成集电集电流Ic,只剩下很少(1-10%)的电子在基区的空穴进行复合,被复合掉的基区空穴由基极电源Eb重新补给,从而形成了基极电流Ibo.根据电流连续性原理得: Ie=Ib+Ic 这就是说,在基极补充一个很小的Ib,就可以在集电极上得到一个较大的Ic,这就是所谓电流放大作用,Ic与Ib是维持一定的比例关系,即: β1=Ic/Ib 式中:β1--称为直流放大倍数, 集电极电流的变化量△Ic与基极电流的变化量△Ib之比为: β= △Ic/△Ib 式中β--称为交流电流放大倍数,由于低频时β1和β的数值相差不大,所以有时为了方便起见,对两者不作严格区分,β值约为几十至一百多。 三极管是一种电流放大器件,但在实际使用中常常利用三极管的电流放大作用,通过电阻转变为电压放大作用。
三极管放大时管子内部的工作原理 :
1、发射区向基区发射电子 电源Ub经过电阻Rb加在发射结上,发射结正偏,发射区的多数载流子(自由电子)不断地越过发射结进入基区,形成发射极电流Ie。同时基区多数载流子也向发射区扩散,但由于多数载流子浓度远低于发射区载流子浓度,可以不考虑这个电流,因此可以认为发射结主要是电子流。
2、基区中电子的扩散与复合 电子进入基区后,先在靠近发射结的附近密集,渐渐形成电子浓度差,在浓度差的作用下,促使电子流在基区中向集电结扩散,被集电结电场拉入集电区形成集电极电流Ic。也有很小一部分电子(因为基区很薄)与基区的空穴复合,扩散的电子流与复合电子流之比例决定了三极管的放大能力。
3、集电区收集电子 由于集电结外加反向电压很大,这个反向电压产生的电场力将阻止集电区电子向基区扩散,同时将扩散到集电结附近的电子拉入集电区从而形成集电极主电流Icn。另外集电区的少数载流子(空穴)也会产生漂移运动,流向基区形成反向饱和电流,用Icbo来表示,其数值很小,但对温度却异常敏感。
『叁』 关於半导体的电容
首先, 电容的决定式为:C=εS/4πkd 。
其中,ε是一个常数,S为电容极板的正对面积,d为电容极板的距离,k则是静电力常量。
我们将你说的空气等效视为真空, 一半的空间置换为半导体, 实际改变的只有 d .
所以d减小为原来的1/2, 电容容值增大到原来的2倍。
『肆』 为什么采用半导体材料制作电子器件
我觉得半导体最强的是它的控制作用,可以让电子电路功能丰富许多
『伍』 什么是半导体,什么是电容,电感,二极管,三极管,他们都有什么用
半岛体-----是介于导体和绝缘体之间的,导电性能没有 诸如银 铜 铝 铁 等 那强专
电容-------是通交流电 阻支属流电的 还可以蓄电
电感-------是通直流电 阻交流电 可以滤波
二极管------有单向导电性 正接 导通 反接截止 限制电压作用 常见的电器上 红 绿 色小灯 就是发光二极管
三极管----有放大电流 电压 信号 功率 作用 还可以用做自动开关`!
『陆』 电容器在电路中的作用电路中为什么要装电容器
电容器在不同的电路中有不同的作用,弱电电路中有检波、滤波、隔直、震荡、旁路专、耦合等等。在电力线属路中主要用于提高线路的功率因数。因为电气设备中有大量的电感性元件,会产生大量的无功功率,从而占用了电力资源的容量,增加了线路的损耗。在用电端并联时当的电容器,可以减少线路的无功功率,提高线路的效率。
『柒』 为什么用半导体做电子元件
因为半导体(主要是硅,地球上硅的储量很多,便宜)可以进过不同步骤和层次的加工,形成导体和绝缘体从而实现功率放大或转换的功能,二极管 3级管 等电子元件都是这个道理
『捌』 半导体为什么可以做芯片
太复杂了说起来。详细的可以写一本书。就是半导体开关通过一系列排列可以作想要的数学计算。然后把这一群半导体开关通过高科技集成到一起就变成了芯片。
『玖』 半导体和电容电感哪个行业更好
电容器的种类很多,不同种类的电容器其作用也不同。在中央空调系统中,常采用电解电容器作为控制电路中的滤波元件,用无极性的电容器串联在压缩机(单相异步)电动机的绕组中,使电动机启动绕组在启动时,电流领先运行超过启动电流一个相位角,从而得到启动转矩,使电动机容易启动。电容器主要用于交流电路及脉冲电路中,在直流电路中电容器一般起隔断直流的作用。 2.电容既不产生也不消耗能量,是储能元件。 3.电容器在电力系统中是提高功率因数的重要器件;在电子电路中是获得振荡、滤波、相移、旁路、耦合等作用的主要元件。 4.因为在工业上使用的负载主要是电动机感性负载,所以要并电容这容性负载才能使电网平衡. 5.在接地线上,为什么有的也要通过电容后再接地咧? 因为在直流电路中是抗干扰,把干扰脉冲通过电容接地(在这次要作用是隔直——电路中的电位关系);交流电路中也有这样通过电容接地的,一般容量较小,也是抗干扰和电位隔离作用. 6.电容补尝功率因数是怎么回事因为在电容上建立电。电感储能的优点是可以做到较大电流,而且寿命长。 缺点是电感有磁饱和的问题,当频率低于电感的固有频率时,会导致电流巨增,轻的是耗电量增大,严重的会烧毁电路中的功率元件。另外它的体积重量也是一个不太占优势的地方,磁芯还怕摔。 电容储能的优点是充满电后几乎不再耗电,而且自身损耗较小,体积和重量也有较大优势,耐机械冲击性较强。 缺点是电容的寿命受电解液的影响比较短,并且工作频率高时,热量会使电解液更快消耗,不适合在高温时使用。
『拾』 为什么什么电器里都要用电容器啊 到底起什么作用啊
电容
电容是表征电容器容纳电荷的本领的物理量。我们把电容器的两极板间的电势差增加1伏所需的电量,叫做电容器的电容。
电容的符号是C。在国际单位制里,电容的单位是法拉,简称法,符号是F。一个电容器,如果带1库的电量时两级间的电势差是1伏,这个电容器的电容就是1法。
很多电子产品中,电容器都是必不可少的电子元器件,它在电子设备中充当整流器的平滑滤波、电源和退耦、交流信号的旁路、交直流电路的交流耦合等。由于电容器的类型和结构种类比较多,因此,使用者不仅需要了解各类电容器的性能指标和一般特性,而且还必须了解在给定用途下各种元件的优缺点、机械或环境的限制条件等。本文介绍电容器的主要参数及应用,可供读者选择电容器种类时用。
1、标称电容量(CR):电容器产品标出的电容量值。
云母和陶瓷介质电容器的电容量较低(大约在5000pF以下);纸、塑料和一些陶瓷介质形式的电容量居中(大约在0005μF10μF);通常电解电容器的容量较大。这是一个粗略的分类法。
2、类别温度范围:电容器设计所确定的能连续工作的环境温度范围,该范围取决于它相应类别的温度极限值,如上限类别温度、下限类别温度、额定温度(可以连续施加额定电压的最高环境温度)等。
3、额定电压(UR):在下限类别温度和额定温度之间的任一温度下,可以连续施加在电容器上的最大直流电压或最大交流电压的有效值或脉冲电压的峰值。
电容器应用在高压场合时,必须注意电晕的影响。电晕是由于在介质/电极层之间存在空隙而产生的,它除了可以产生损坏设备的寄生信号外,还会导致电容器介质击穿。在交流或脉动条件下,电晕特别容易发生。对于所有的电容器,在使用中应保证直流电压与交流峰值电压之和不的超过直流电压额定值。
4、损耗角正切(tgδ):在规定频率的正弦电压下,电容器的损耗功率除以电容器的无功功率。
这里需要解释一下,在实际应用中,电容器并不是一个纯电容,其内部还有等效电阻,它的简化等效电路如下图所示。图中C为电容器的实际电容量,Rs是电容器的串联等效电阻,Rp是介质的绝缘电阻,Ro是介质的吸收等效电阻。对于电子设备来说,要求Rs愈小愈好,也就是说要求损耗功率小,其与电容的功率的夹角 δ要小。
这个关系用下式来表达: tgδ=Rs/Xc=2πf×c×Rs 因此,在应用当中应注意选择这个参数,避免自身发热过大,以减少设备的失效性。
5、电容器的温度特性:通常是以20℃基准温度的电容量与有关温度的电容量的百分比表示。