当前位置:首页 » 半导体业 » 半导体探测器有哪些

半导体探测器有哪些

发布时间: 2021-01-10 19:28:31

半导体探测器的仪器应用

半导体探测器有两个电极,加有一定的偏压。当入射粒子进入半导体探测器的灵敏区时,即产生电子-空穴对。在两极加上电压后,电荷载流子就向两极作漂移运动﹐收集电极上会感应出电荷,从而在外电路形成信号脉冲。但在半导体探测器中,入射粒子产生一个电子-空穴对所需消耗的平均能量为气体电离室产生一个离子对所需消耗的十分之一左右,因此半导体探测器比闪烁计数器和气体电离探测器的能量分辨率好得多。半导体探测器的灵敏区应是接近理想的半导体材料,而实际上一般的半导体材料都有较高的杂质浓度,必须对杂质进行补偿或提高半导体单晶的纯度。通常使用的半导体探测器主要有结型、面垒型、锂漂移型和高纯锗等几种类型。金硅面垒型探测器1958年首次出现,锂漂移型探测器60年代初研制成功,同轴型高纯锗(HPGe)探测器和高阻硅探测器等主要用于能量测量和时间的探测器陆续投入使用,半导体探测器得到迅速的发展和广泛应用。
结型探测器 结构类似结型半导体二极管,但用于探测粒子时要加上足够的反向偏压。这时电子和空穴背着PN结移动而形成灵敏区。结型探测器一般采用硅单晶。这是因硅具有较大的禁带宽度,可用以保证在室温下工作时有足够小的漏电流。此外它的灵敏层厚度一般只有1毫米左右,故只适于探测穿透力较小的带电粒子。

❷ 半导体探测器的实际操作运用

丁肈中领导的AMS实验,目标是在宇宙线中寻找反物质和暗物质。它的探测器核心版部分的权径迹室采用了多层硅微条探测器。由美国、法国、意大利、日本、瑞典等参加的GLAST实验组的大面积γ射线太空望远镜的核心部分也使用了多层硅微条探测器,总面积大于80平方米,主要用来作为γ→ e-+e+ 的对转换过程的径迹测量望远镜。硅微条探测器的位置分辨率可好于σ=1.4μm,这是任何气体探测器和闪烁探测器很难作到的。

❸ 有谁知道探测器怎么分类,气体探测器,半导体探测器,闪烁体探测器等等是什么关系。

qwqwqwde1

❹ 半导体探测器的分类

随着锗半导体材料提纯技术的进展,已可直接用超纯锗材料制备辐射探测回器。它具有工艺简单、答制造周期短和可在室温下保存等优点。用超纯锗材料还便于制成X、γ射线探测器,既可做成很大灵敏体积,又有很薄的死层,可同时用来探测X和γ射线。高纯锗探测器发展很快,有逐渐取代锗

❺ 半导体探测器与气体探测器相比,有哪些优点和缺点

半导体探测器有两个电极,加有一定的偏压。当入射粒子进入半导体探测器的灵敏区时,即产生电子-空穴对。在两极加上电压后,电荷载流子就向两极作漂移运动﹐收集电极上会感应出电荷,从而在外电路形成信号脉冲。

❻ 高纯锗半导体探测器(HPGe)

HPGe是用高纯度锗制成的PN探测器。在一定工作电压下PN结的耗尽层厚度与材料的电阻率的平方根成正比。当锗晶体中杂质的原子浓度小于1010/cm3时,即可满足制造HPGe探测器的要求。

目前的工艺水平已能制造体积比较大的探测器,可以分别满足低能X射线和高能γ射线的能谱测量要求。与Ge(Li)和Si(Li)能量分辨率相当。它的优点是可以常温下保存。

❼ PN结型半导体探测器

在P型半导体中空穴浓度较高,在N型半导体中电子浓度较高。两者结合在一起时,载流子将由高浓度区向低浓度区扩散,结果在两者附近形成一个结区,如图4-3-1所示。在结区基本上不存在自由载流子,只有施主和受主的离子,形成一个空间电荷区,N型一侧带正电,P型一侧带负电,构成一个内部电场,电场将阻止载流子继续扩散。如果在空间电荷区产生电离形成自由载流子,将立即把电子拉向N区,空穴拉向P区。不可能存在自由载流子,所以PN结区称为“耗尽层”。

当给PN外加电压,反向偏置时,即电源正端接N区,负极接P区,使空间电荷电场增强。

电子和空穴分别向正端和负端扩散,结果使“耗尽层”的宽度增大。

耗尽层即为探测器的灵敏区。在电压反向偏置下,耗尽层电阻率极高,相当于外加电压全加在耗尽层端;而P区和N区,自由载流子浓度很高,电阻率很低,相当于两个电极。

探测的射线进入灵敏区(耗尽层),产生电离,生成大量电子-空穴对。在电场作用下,电子和空穴分别迅速向正、负两极漂移、被收集,在输出电路中形成脉冲电信号。

金硅面垒半导体探测器就是以N型硅单晶作基片。将基片经酸处理后形成一氧化层,并在氧化层上镀一层金膜(约10nm厚)。在靠金膜的氧化层具有P型硅特性,在基片背面镀镍接电源正极,金膜与铜外壳接触接电源负极,氧化层构成PN结耗尽层为金硅面垒探测器的灵敏区。目前金硅面垒探测器灵敏区厚度最大可做到2mm。一般做成圆片状。

金硅面垒探测器,由于耗尽层厚度较薄,主要用于探测带电重粒子(如α、p等),亦可用作能谱测量,探测效率近于100%。也可用于β射线测量,对γ射线不灵敏。

几种常用金硅面垒探测器特性列于表4-3-1。

图4-3-1 PN结形成及其特性

a—PN结形成过程示意图;b—PN结特性示意图

(a)耗尽层(阴影区);(b)受主、施主、电子、空穴分布;(c)电子和空穴浓度;(d)施主和受主浓度;(e)净电荷分布;(f)静电电位分布;(g)外加反向偏压时受主、施主、电子和空穴的分布

表4-3-1 几种金硅面垒探测器主要特性

❽ 半导体探测器的简介

半导体探测器的前身可以认为是晶体计数器。早在1926年就有人发现某些固体电专介质在核辐射下产生电导现属象。后来,相继出现了氯化银、金刚石等晶体计数器。但是,由于无法克服晶体的极化效应问题,迄今为止只有金刚石探测器可以达到实用水平。半导体探测器发现较晚,1949年开始有人用α 粒子照射锗半导体点接触型二极管时发现有电脉冲输出。到1958年才出现第一个金硅面垒型探测器。直至60年代初,锂漂移型探测器研制成功后,半导体探测器才得到迅速的发展和广泛应用。

❾ PN结型半导体探测器是

P型半导体空穴是多数载流子,型半导体电子是多数载流子,在PN结中由于电子与空穴的扩散作用,形成区域电场,最后达到动平衡,呈现非导电性,称为阻挡层,区域电场方向如图4-1-3所示。

如果在PN结两端加上反向偏压,即P加负,N加正,就破坏了动平衡,使漂移起主导作用。在P区使电子向N区运动,在N区使空穴向P区运动,这样就加宽了阻挡层。当漂移与扩散两种作用互相抵消,达到暂时动平衡,又呈现出非导电性,这个加厚了的阻挡层,称为耗尽层,又称作本征区。耗尽层电场方向如图4-1-4所示。

式中Vi——收集载流子后的电流脉冲幅度;Q——收集载流子后的总电荷量。

这种结型探测器的耗尽层厚度只能做到零点几毫米到3mm,很难做大。耗尽层与电接点之间部分,往往形成不起探测作用的死区,且难以消除。电容量随外加电压变化,电阻率低,本底电流大,不能做单个脉冲探测器,只能做整流式的剂量测量元件。因此在实际工作中,不能用作γ量子能量探测器。

热点内容
三个字的电影名 发布:2024-08-19 09:10:03 浏览:417
台湾红羊经典电影 发布:2024-08-19 09:02:17 浏览:767
搞笑电影范冰冰梁家辉开战 发布:2024-08-19 08:53:18 浏览:917
免费午夜激情 发布:2024-08-19 08:42:15 浏览:831
40分钟左右的英语电影 发布:2024-08-19 08:28:43 浏览:695
电影宋基美娜 发布:2024-08-19 08:27:04 浏览:942
宿舍都变成女的的电影 发布:2024-08-19 07:59:35 浏览:897
台湾恐怖片丧尸 发布:2024-08-19 07:57:21 浏览:179
免费观看qq群 发布:2024-08-19 07:53:00 浏览:921
4级片名字 发布:2024-08-19 07:39:14 浏览:553